Exploiting dataflow parallelism in Teradevice Computing
Dataflow parallelism is key to reach power efficiency, reliability, efficient parallel programmability, scalability, data bandwidth. In this project we propose dataflow both at task level and inside thethreads, to offload and mana...
Dataflow parallelism is key to reach power efficiency, reliability, efficient parallel programmability, scalability, data bandwidth. In this project we propose dataflow both at task level and inside thethreads, to offload and manage accelerated codes, to localize the computation, for managing the fault information with appropriate protocols, to easily migrate code to the available/working componentsand to respect the power/performance/temperature/reliability envelope, to efficiently handle the parallelism and have an easy and powerful execution model, to produce a more predictable behavior.While parallel systems have been around for many years, they were usually programmed and tuned by experts. In the future large scale systems will be widely available and therefore exploiting efficientlythe available parallelism will have to be easy enough to be accessible by the common user. Traditional programming models are either not very efficient for every application (message passing) or difficult toscale (shared memory). In order to address the programmability challenge we propose the use of a compiler directive based model to support an underlying dataflow-based thread execution that is known to exploit well the available parallelism and to efficiently move around large amounts of data. In particular we propose to use a model that offersdataflow scheduling of parallel execution threads. Combining multithreading with dataflow allows to exploit the available parallelism without the overheads of the original dataflow techniques.The multithreading dataflow model is expected to perform well for a number of classes of applications.An important contribution is provided by prof. Gao's team, who has been developing dataflow concepts for decades and has joined the TERAFLUX project after its initial phase.TERAFLUX is now bringing together top experts in dataflow in both continents Europe and Americas, with the aim to reach the higher goal of demonstrating for the first time the efficiency dataflow concept for the Exascale parallel computers of the 2020 and beyond.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.