Exploiting Chemical Self Organisation in Materials Science
"From molecules and cells to whole organisms, self-organising behaviour emerges from the interaction of components. The most beautiful examples of self-organisation occur in biological systems, where the combination of non-equilib...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PROTOMAT
Integrating non-living and living matter via protocellular m...
2M€
Cerrado
Morpheus
Morphogenesis of photo mechanized molecular materials
2M€
Cerrado
SASSYPOL
Hierarchical Self Assembly of Polymeric Soft Systems
4M€
Cerrado
BIOMORPH
Novel dynamic self assembling system from hierarchical and...
100K€
Cerrado
CTQ2015-68429-R
SISTEMAS AUTO-ORGANIZADOS Y AUTO-ENSAMBLADOS PARA APLICACION...
138K€
Cerrado
Información proyecto ECSOMS
Líder del proyecto
UNIVERSITY OF LEEDS
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
201K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"From molecules and cells to whole organisms, self-organising behaviour emerges from the interaction of components. The most beautiful examples of self-organisation occur in biological systems, where the combination of non-equilibrium chemistry and physical processes in confined environments give rise to complex but ordered structures. A current challenge for physical scientists is to mimic biology for the creation of complex patterned materials that might act as functional catalytic surfaces, novel materials or devices for the healthcare industries such as synthetic tissue.
The purpose of this project is to develop new technologies for the generation of patterned materials. For the creation of spatial order, a mechanism proposed by Alan Turing in 1952 as a chemical basis for morphogenesis will be exploited. In this seminal work, he demonstrated theoretically how reaction and diffusion combine to create a chemical pre-pattern for the growth of form in biological systems. Now the robust formation of microscale spots, stripes and labyrinth-type patterns has been reported in flow reactors containing gels/membranes. We design novel flow reactors to generate the first Turing patterns on curved surfaces using porous tubes or particles as support. The patterns will trigger polymerisation processes by using, for example, acid concentration patterns coupled with acid catalysed polymerisation to obtain micro-patterned tubes or spheres. Part of the research will also involve developing bio-compatible routes to micropatterned materials by use of enzyme-catalysed reactions. The project is highly interdisciplinary, combining the physical sciences and engineering. It will also provide insight to the role of curvature on biological pattern formation driven by reaction-diffusion mechanisms; an important area of exclusively theoretical research."