To date, mechanistic studies on the macromolecular complexes that synthesize or degrade RNAs or proteins have investigated these machines individually to understand how they execute different steps in the gene expression process....
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
Exosome-Ski-Complex
Structural and functional studies on how the Ski complex act...
162K€
Cerrado
EXOonRNA
Delineating the kinetic RNA interactome of nuclear exosome a...
219K€
Cerrado
BFU2008-04082-C02-02
PAPEL DE SUS1P Y PROTEINAS RELACIONADAS EN TRANSCRIPCION ACO...
182K€
Cerrado
BFU2010-21975-C03-01
MECANISMOS DE COORDINACION ENTRE TRANSCRIPCION Y ESTABILIDAD...
230K€
Cerrado
mRNA-DEG-RIBOSOME
Understanding molecular principles of regulated mRNA degrada...
213K€
Cerrado
TERMINATOR
Ribosomal frameshifts as a novel mechanism to control RNA tu...
192K€
Cerrado
Información proyecto EXORICO
Duración del proyecto: 64 meses
Fecha Inicio: 2017-05-08
Fecha Fin: 2022-09-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
To date, mechanistic studies on the macromolecular complexes that synthesize or degrade RNAs or proteins have investigated these machines individually to understand how they execute different steps in the gene expression process. Although the individual complexes catalyze their reactions independently of each other in vitro, increasing evidence suggests that they function in a highly coordinated manner in vivo. The molecular basis for such a coordination remains largely unknown. During the past five years, our group has focused on deciphering the mechanisms of multiprotein complexes that mediate mRNA turnover in S. cerevisiae. Here, I propose to take these analyses to the next level and visualize how a major RNA degradation machine, the exosome, is directly coupled to the protein-synthesis machine, the ribosome. In particular, we want to study two different exosome-ribosome assemblies that underpin opposite outcomes of RNA degradation: a constructive function of the nuclear exosome in the maturation of the large ribosomal subunit and a destructive function of the cytoplasmic exosome in the elimination of ribosome-bound mRNAs. Building on our preliminary data from both the yeast and human systems, we will use a combination of bottom-up biochemical reconstitutions and top-down endogenous purifications to isolate 1) an exosome complex and its nuclear cofactors bound to a pre-60S ribosomal subunit and 2) an exosome complex and its cytoplasmic cofactors bound to a stalled 80S ribosome. We will determine the structures of these ~3 - 4 MDa nuclear and cytoplasmic assemblies using the combined information from cryo-electron microscopy and X-ray crystallography approaches. The structural studies, combined with biochemical and genetic information, will reveal how these machines interact and coordinate RNA metabolism with protein synthesis. Overall, this work will provide important insight into the principles that coordinate different steps of eukaryotic gene expression.