To date, mechanistic studies on the macromolecular complexes that synthesize or degrade RNAs or proteins have investigated these machines individually to understand how they execute different steps in the gene expression process....
ver más
27-11-2024:
Videojuegos y creaci...
Se abre la línea de ayuda pública: Ayudas para la promoción del sector del videojuego, del pódcast y otras formas de creación digital
27-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 1 concesiones
Descripción del proyecto
To date, mechanistic studies on the macromolecular complexes that synthesize or degrade RNAs or proteins have investigated these machines individually to understand how they execute different steps in the gene expression process. Although the individual complexes catalyze their reactions independently of each other in vitro, increasing evidence suggests that they function in a highly coordinated manner in vivo. The molecular basis for such a coordination remains largely unknown. During the past five years, our group has focused on deciphering the mechanisms of multiprotein complexes that mediate mRNA turnover in S. cerevisiae. Here, I propose to take these analyses to the next level and visualize how a major RNA degradation machine, the exosome, is directly coupled to the protein-synthesis machine, the ribosome. In particular, we want to study two different exosome-ribosome assemblies that underpin opposite outcomes of RNA degradation: a constructive function of the nuclear exosome in the maturation of the large ribosomal subunit and a destructive function of the cytoplasmic exosome in the elimination of ribosome-bound mRNAs. Building on our preliminary data from both the yeast and human systems, we will use a combination of bottom-up biochemical reconstitutions and top-down endogenous purifications to isolate 1) an exosome complex and its nuclear cofactors bound to a pre-60S ribosomal subunit and 2) an exosome complex and its cytoplasmic cofactors bound to a stalled 80S ribosome. We will determine the structures of these ~3 - 4 MDa nuclear and cytoplasmic assemblies using the combined information from cryo-electron microscopy and X-ray crystallography approaches. The structural studies, combined with biochemical and genetic information, will reveal how these machines interact and coordinate RNA metabolism with protein synthesis. Overall, this work will provide important insight into the principles that coordinate different steps of eukaryotic gene expression.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.