Excitonic 2D Metasurfaces for Active Multifunctional Flat Optics
Can light fields be manipulated by a single atomic layer? Can quantum mechanical effects in monolayer materials be harnessed to realize dynamic optical elements? Recent work has demonstrated that light-weight and ultra-thin nanost...
Can light fields be manipulated by a single atomic layer? Can quantum mechanical effects in monolayer materials be harnessed to realize dynamic optical elements? Recent work has demonstrated that light-weight and ultra-thin nanostructured optical coatings (metasurfaces) can perform the same optical functions as conventional bulky optical components. Despite these advances, metasurface optical elements have remained static. At the same time, newly emerging and future applications require optical elements with dynamic control of their functionality.Here, I propose to lay the foundations of a completely new class of tunable and multifunctional optical elements by combining recent developments in 2D material science, quantum physics, and nanophotonics, resulting in highly novel excitonic 2D metasurfaces. Building on my strong expertise in the fields of optical metasurfaces and 2D material physics, I will employ monolayer 2D quantum materials to actively tune the optical response of novel nonlocal metasurfaces. These atomically-thin materials exhibit a strong quantum-mechanical exciton resonance in the visible spectral range, even at room temperature. Using electrical control over this exciton resonance, I will study the interplay of localized excitons and delocalized optical modes. Next, I will realize ultracompact optical elements with electrically-tunable functionality. Finally, I will develop novel methods to combine stacked metasurfaces in compound meta-optics that offer multifunctional dynamic optical components.The excitonic 2D metasurfaces open new routes to study the unconventional properties of quantum materials in quantum optics, nanophotonics, and solid-state physics. At the same time, the results of this project open an entirely new approach for the design of actively-tunable multifunctional flat optical components with applications in optical communication, augmented reality, and computational imaging.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.