Exchange-coupled nanowire-nanoplatelet composites for high-performance sustainab...
Exchange-coupled nanowire-nanoplatelet composites for high-performance sustainable magnets
In the MAGWIRE project, we will explore the fundamental mechanisms, optimize the performance and upscale the synthetic protocol for the next generation of sustainable high-performance nanocomposite permanent magnets. The project w...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
RYC-2009-04779
Nanoscale control of magnetic properties: nanoparticles and...
192K€
Cerrado
TED2021-130957B-C55
DESCIFRANDO LAS PROPIEDADES MAGNETICAS DE SISTEMAS BASADOS E...
138K€
Cerrado
NANOPERMAG
HIGH PERFORMANCE NANOSTRUCTURE PERMANENT MAGNETS
202K€
Cerrado
BES-2009-023317
PROPIEDADES MAGNETICAS Y DE MAGNETOTRANSPORTE DE MICRO- Y NA...
43K€
Cerrado
EEBB-I-12-04416
NANOPARTICULAS Y COMPOSITES MAGNETICOS CON APLICACIONES TECN...
8K€
Cerrado
NANOPYME
Nanocrystalline Permanent Magnets Based on Hybrid Metal Ferr...
5M€
Cerrado
Información proyecto MAGWIRE
Duración del proyecto: 37 meses
Fecha Inicio: 2023-07-06
Fecha Fin: 2026-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
In the MAGWIRE project, we will explore the fundamental mechanisms, optimize the performance and upscale the synthetic protocol for the next generation of sustainable high-performance nanocomposite permanent magnets. The project will combine and exploit the key individual expertises of Dr. Matilde Saura Muzquiz (experienced researcher) in the synthesis and structural/magnetic characterization of nanostructured ferrite magnets, and of Prof. Lucas Perez (project supervisor) in the field of nanomagnetism and nanowires synthesis/characterization. The research will build on considerable recent improvements in the performance of strontium hexaferrite magnets achieved through crystal engineering (Ca and Al-doping) and bottom-up nanostructuring (size and morphology control), as well as on promising preliminary results for hexaferrite-nanowire magnetic composites. In MAGWIRE we will develop a novel high-performance exchange-spring nanocomposite magnetic material based on a synergistic nanoscale combination of high-coercivity platelet-shaped Sr1-xCaxFe12-yAlyO19 nanoparticles and high-magnetization FexCo1-x nanowires. The anisotropic shape (plates and wires) of the constituent nanoscale components will drive an inherent self-induced alignment, which will further improve performance. In addition, we will establish scalable synthesis routes based on a fundamental understanding of the mechanisms in play, that will be elucidated by in situ synchrotron X-ray scattering investigations of the nanoplatelet and nanowire formation.