EXamining CHemistry and Nanoparticle Geometry Effects at the INterface of Liquid...
EXamining CHemistry and Nanoparticle Geometry Effects at the INterface of Liquid CrystalS
The organization of nanoparticles is important for tuning material characteristics, impacting electronic and optical properties. Systems in nanotechnology are reliant upon self-assembly. Recently, liquid crystals, famous for displ...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CTQ2014-55073-P
ESTUDIO COMPUTACIONAL DE NANOESTRUCTURAS ORGANICAS TUBULARES...
83K€
Cerrado
SUPRACRYST
Self Assembly of DNA Functionalized Nanoparticles a viable...
45K€
Cerrado
SURFOIDS
Organization and self assembly of colloidal particles trappe...
168K€
Cerrado
PID2021-128659NB-I00
NUEVAS ESTRATEGIAS PARA MANIPULAR LA ESTRUCTURA ELECTRONICA...
36K€
Cerrado
MAT2009-14636-C03-02
PREPARACION Y ESTUDIO DE LAS PROPIEDADES FISICAS BAJO CONFIN...
97K€
Cerrado
Duración del proyecto: 31 meses
Fecha Inicio: 2020-03-24
Fecha Fin: 2022-10-31
Líder del proyecto
UNIVERSITEIT UTRECHT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
188K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The organization of nanoparticles is important for tuning material characteristics, impacting electronic and optical properties. Systems in nanotechnology are reliant upon self-assembly. Recently, liquid crystals, famous for displays, have been employed to self-assemble particles, due to the medium’s ability to form complex patterns. However, the exact interactions between nanoparticles and liquid crystals at the submicron scale remain ambiguous. EXCHANGE_inLCs seeks to elucidate particle-liquid crystal interactions at the submicron scale, by EXamining CHemistry and Nanoparticle Geometry Effects at the INterface of Liquid CrystalS through: 1) varying system GEOMETRY to elucidate the impact of confinement, particle size, and shape, and 2) varying system CHEMISTRY to clarify the activity of certain chemical species around particles. The project will be performed at Utrecht University, where the host has expertise in nanoparticle assembly and light nanoscopy. By varying system length scales and types of surface treatments, key interactions can be isolated.
The project will facilitate the following two-way transfer of knowledge between the host and me: A) The host has innovated methods of functionalizing, manipulating, and imaging particle assemblies, down to the single-particle resolution. Both skills are essential for me to investigate my systems at a challenging length scale where both chemistry and geometry can be equally influential. B) The host has a history of exploring the ordering of rod-like particles (colloidal liquid crystals), and my expertise in patterning rod-like molecules (molecular liquid crystals) would complement their body of knowledge. We share a mutual interest in interparticle interactions and their effects on self-assembly. The project combines our areas of expertise to advance fundamental knowledge of nanoparticle self-assembly in anisotropic fluids, essential for developing new bottom-up approaches in nanotechnology, a European priority.