EVTOL MULTI-FIDELITY HYBRID DESIGN AND OPTIMIZATION FOR LOW NOISE AND HIGH AEROD...
EVTOL MULTI-FIDELITY HYBRID DESIGN AND OPTIMIZATION FOR LOW NOISE AND HIGH AERODYNAMIC PERFORMANCE
This project supports the digital transformation of aircraft design by developing new multi-disciplinary and multi-fidelity simulation tools that will enable novel aircraft architectures with improved aerodynamics and reduced nois...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This project supports the digital transformation of aircraft design by developing new multi-disciplinary and multi-fidelity simulation tools that will enable novel aircraft architectures with improved aerodynamics and reduced noise emissions. This project addresses more specifically the design issues of electric Vertical Take-Off and Landing aircraft developed for Urban Air Mobility, but the innovative design/optimization framework that are proposed in this project are equally applicable to other novel aircraft architectures, such as those based on Distributed Electric Propulsion, Boundary Layer Ingestion, or open rotors. One common issue for most novel aircraft concepts is indeed the complexity of the aerodynamic and acoustic interactions between the lift-thrust systems and the airframe.eVTOLUTION is designed as a low-to-mid-TRL enabler project meant to develop the knowledge, data, tools, and methods that are necessary to understand, model, and optimize aerodynamic and aeroacoustic installation effects. The main objective of the project is to implement and demonstrate a novel design and optimization framework, built upon three pillars: (i) exploit the strengths of low-, mid-, and high-fidelity simulation methods at each phase of the design; (ii) accelerate the optimizations while preserving robustness thanks to data-driven surrogate models combined with physical models; and (iii) further consolidate the accuracy and robustness of the design and optimization using advanced experimental/numerical cross-validation and training methodologies.The realization of these objectives will be achieved through design exercises, defined by the consortium under the guidance of its aircraft manufacturers. The analysis of the design exercises will permit quantifying the gains achieved in terms of design cycle time, prediction accuracy, optimization robustness, the efficiency of the noise-mitigation technologies, and eventually the acceleration of the certification process.