Evolution of the genetic architecture of quantitative traits
A major challenge in evolutionary biology is to understand and predict the evolution of phenotypic traits influenced by many genes, a.k.a. quantitative traits, which represent the majority of adaptive traits. For this, we require...
A major challenge in evolutionary biology is to understand and predict the evolution of phenotypic traits influenced by many genes, a.k.a. quantitative traits, which represent the majority of adaptive traits. For this, we require an accurate knowledge of the ‘genetic architecture’ of a trait, here defined as the statistical distribution of the effects of the genes on the phenotype. However, it has not been possible to firmly check theoretical predictions against empirical data, due to a lack of method to accurately infer genetic architecture.
In this project, I will develop novel statistical methodology to accurately infer the genetic architecture of traits in the wild, by leveraging the statistical correlation between neighbouring sites in the genome, or linkage disequilibrium. Using the power of a new linked-read sequencing to obtain information on recombination, I will apply this novel methodology to study the link between the genetic architecture of the traits, and the ‘evolutionary regime’, i.e. characteristics of selective and neutral factors. First, I will perform an in-depth study of the link between selection and genetic architecture on a long-term-studied wild population of common lizards. Second, I will apply my method to analogous traits across more than 20 species to infer their genetic architecture and use knowledge about the evolutionary regime and phylogenetic context, to assess the influence of those components on the variation in genetic architecture.
By combining novel methodology with analysis within and across species, this project will provide a firm empirical basis for thinking about genetic architecture. In turn, this understanding of the expected distribution of the gene effects, depending on the evolutionary context, will improve our ability to forecast adaptation, predict phenotype from genomic data and locate genes in diverse fields such as evolution, agronomy, conservation and human health.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.