EveNt DrivEn Active Vision for Object peRception (ENDEAVOR)
"Computer vision, leveraging deep learning in the last decade, has achieved unprecedented progress. However, it is largely relying on datasets of still images, thus using ""passive vision"". On the contrary, biological vision is a...
"Computer vision, leveraging deep learning in the last decade, has achieved unprecedented progress. However, it is largely relying on datasets of still images, thus using ""passive vision"". On the contrary, biological vision is a fundamentally active process of exploration to disambiguate objects, and yet, the potential of active vision for robotics remains underexplored.
The ENDEAVOR project seeks to redefine traditional static image analysis within fast online robotic applications.
This project integrates the computational models of Sensorimotor Contingency Theory (O'Regan and Noe, 2001) with event-driven perception and neuromorphic computing. Sensorimotor contingency represents the dynamic relationship between an agent's sensory inputs and motor actions in the environment.
Active sensory data generation naturally aligns with event-driven perception, tracking moving objects via agent-generated events, while neuromorphic computing minimises latency and energy use.
The humanoid robot iCub will hold objects and examine them from various perspectives through eye and wrist movements. The project capitalises on bioinspired hardware and software solutions, ultimately aiming to reduce computational demands, power consumption, and latency in intelligent systems.
ENDEAVOR offers three significant contributions to computer vision and robotics: (1) It introduces active vision strategies that enhance object perception. (2) It integrates event-based visual sensing with rapid and efficient parallel computation, leveraging neuromorphic computing principles. (3) The project establishes a benchmark that allows for both qualitative and quantitative evaluations, fostering comparisons among various approaches, including frame-based, event-based, and spiking-based systems.
The importance of this approach lies in the effort to reduce the storage of massive amounts of data while aiming for mW of power consumption."ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.