European School on Artificial Leaf Electrodes Devices
Climate change resulting from accumulation of anthropogenic carbon dioxide in the atmosphere and the uncertainty in the
amount of recoverable fossil fuel reserves are driving forces for the development of renewable, carbon-neutral...
Climate change resulting from accumulation of anthropogenic carbon dioxide in the atmosphere and the uncertainty in the
amount of recoverable fossil fuel reserves are driving forces for the development of renewable, carbon-neutral energy
technologies. Artificial photosynthesis appears to be an appealing approach for a sustainable energy generation as it
produces solar fuels or commodities for chemistry in a stable and storable chemical form, from solar energy, H2O & CO2.
The eSCALED project is a contribution to structure early-stage research training at the European level and strengthen
European innovation capacity to elaborate an artificial leaf. The ESR will be in charge of combining in a unique device a
solar cell and a bioinspired electrochemical stack where H2O oxidation and H+ or CO2 reduction are performed in microreactors.
The novelties in this project are at two levels: (1) Developing sustainable joint doctoral degree structure based on
inter/multidisciplinary aspects of biological/biochemical, condensed, inorganic & soft matter to device engineering and
innovation development. (2) Scientifically using, cheap and easy processes tandem organic solar cells, earth-abundant
materials for water splitting, new generation of catalysts and natural/artificial hydrogenase enzymes for hydrogen production,
formate dehydrogenases for catalytic carbon dioxide reduction, new proton-exchange fluorinated membranes and finally,
electrode micro porosity to mimic the chloroplasts of a plant. The eSCALED collaborative project brings together for the first
time, 12 internationally recognized academic and industrial research groups. The project has an interdisciplinary scientific
approach integrating the latest knowledge on catalysis, photovoltaic and polymer chemistry for self-structuration. Major
outcomes will include breakthroughs in the development of artificial photosynthetic leaf as a photoelectrochemical device,
highly trained researchers & new partners collaborations.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.