In response to the need to tackle increasingly complex medical research questions, a growing amount of human health data is being collected, either in routine Electronic Healthcare Record (EHR) databases, through research-driven c...
In response to the need to tackle increasingly complex medical research questions, a growing amount of human health data is being collected, either in routine Electronic Healthcare Record (EHR) databases, through research-driven cohort studies, in biobanks or related efforts. However, data sources are typically fragmented and contain information gaps which prevent their full exploitation. EMIF aims to address this by developing a common Information Framework that enables improved access to these data sources, enhancement through linkage of the different sources and collection of additional new information. EMIF will focus on two specific research objectives in order to guide the development of the Information Framework: identification and evaluation of biomarkers i) of the risk for metabolic complications in obesity; ii) of Alzheimer’s Disease onset in the preclinical and prodromal phase, which in both cases will identify high-risk individuals for future intervention trials. To achieve this, a variety of data sources ranging from small-scale information-rich disease cohorts for biomarker discovery to large EHR data for population characterisation and biomarker validation will be utilised. An extreme phenotype approach will utilise the subpopulations at the extremes of a particular trait distribution using large-scale metabolomics and proteomics for biomarker evaluation. The development of the Information Framework will involve addressing data standards, semantic interoperability as well as ethics, data privacy, legal issues and the development of an IT platform for multi data sources access. The Information Framework will be designed to support the current research objectives, but more generally studies using human health data. The project consortium is a partnership between Academia and EFPIA and comprises a large number of world-renown experts in data access and linkage and the Metabolic and AD therapeutic areas, with many being involved in other related projectsver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.