Equalizing or disequalizing? Opposing socio demographic determinants of the spat...
Equalizing or disequalizing? Opposing socio demographic determinants of the spatial distribution of welfare.
This project aims to investigate the extent to which current trends in family formation, living arrangements and gender-specific education levels are related to the spatial distribution of welfare and the emergence of jobless hous...
This project aims to investigate the extent to which current trends in family formation, living arrangements and gender-specific education levels are related to the spatial distribution of welfare and the emergence of jobless households in contemporary societies. Inter alia, we aim to explore whether the welfare disequalizing, impoverishing and polarizing effects that are currently associated with recent patterns in assortative mating, lone parenthood and household composition are offset by an unprecedented phenomenon that is sweeping the world during the last decades: the rapid process education expansion in tandem with a reversal of the gender gap in education. The extent to which these two opposing forces occur and which of them is more influential in shaping the distribution of welfare between and within countries is among the main goals of this project. To this end, we will draw upon a variety of household surveys and the world largest sources of census microdata: the Integrated Public Use Microdata Series (IPUMS) project and the Latin American and Caribbean Demographic Centre. Because of their unparalleled geographical coverage and detail, these sources of data constitute exceptional instruments to study socio-demographic phenomena that have been vastly underutilized by the international research community. Triangulating our analysis at the micro, meso and macro levels, we will establish formal linkages between welfare distributions and its socio-demographic correlates to unveil insightful relationships that have been unsatisfactorily explored so far because of the lack of appropriately harmonized, sufficiently detailed and georeferenced datasets. We will strongly emphasize the spatial distribution of variables to unravel local patterns that might take place at highly disaggregated levels, therefore not being discernible to traditional (not as finely-grained) approaches.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.