EO4FoodSecurity: Using Earth Observation Enabled Land Cover Classification for C...
EO4FoodSecurity: Using Earth Observation Enabled Land Cover Classification for Characterizing Global Food Security on Regional Scales
Characterizing the state of global food security is essential in devising and evaluating policies and programs for effective decision making. The concept of food security is multidimensional and dynamic and is often compounded by...
Characterizing the state of global food security is essential in devising and evaluating policies and programs for effective decision making. The concept of food security is multidimensional and dynamic and is often compounded by the challenge of obtaining relevant data. Moreover, finding appropriate indicators that specifically encompass the four dimensions of food security (including physical availability of food, economic and physical access to food, food utilization, and sustainability) as specified by UN FAO remains a challenging task. There exist variety of different measures for assessing the food security situation, but they merely focus on nutrition and physical aspects and thus provide incomplete assessments related to the problem.
In this PoC project, I aim to extend the unique AI algorithms and the big EO data management features developed in the ERC StG So2Sat to characterize the state of global food security on regional scales using multimodal data derived from satellite imagery and auxiliary open data, and offer our software as a commercial, integrated service. Within the PoC, a comprehensive business case that will assist us in designing an exploitation strategy will be developed. Achieving these objectives will augment the capability of our existing AI solution for land cover/land use mapping to infer the crucial aspects of food security and sustainability.
Our value proposition in EO4FoodSecurity is a set of professional solutions to extract relevant indicators for characterizing food security by retrieving them from big EO data and other open sources using AI. E.g., generating land use map and using it along with other information extraction modules of So2Sat (such as population density, road and building footprints) and other open data (e.g., meteorological, nutrition) to generate food security map at unprecedented finer spatial and temporal scales. We aim to support these solutions in an easy-to-use, interactive big EO data analysis platform.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.