Entanglement and Quantum Engineering with optical Microcavities
I propose to leverage the unique properties of optical fiber Fabry-Perot (FFP) microcavities pioneered by my group to advance the field of quantum engineering. We will take quantum-enhanced measurement from its current proof-of-pr...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
IQOS
Integrated Quantum Optomechanical Systems IQOS
171K€
Cerrado
GeNoSOS
Generation of Non classical States in Optomechanical Systems
175K€
Cerrado
FIS2008-00784
HACIA TECNOLOGIAS CUANTICAS CON ATOMOS ULTRAFRIOS
341K€
Cerrado
OMSIQUD
Coupling Confined Optical and Mechanical Modes to a Single Q...
194K€
Cerrado
QUOM
Quantum Optomechanics using Monolithic Micro Resonators
167K€
Cerrado
AAPLQIC
Light phonon quantum interface with atomic arrays in a cavit...
162K€
Cerrado
Información proyecto EQUEMI
Duración del proyecto: 72 meses
Fecha Inicio: 2015-09-11
Fecha Fin: 2021-09-30
Líder del proyecto
SORBONNE UNIVERSITE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
I propose to leverage the unique properties of optical fiber Fabry-Perot (FFP) microcavities pioneered by my group to advance the field of quantum engineering. We will take quantum-enhanced measurement from its current proof-of-principle state to a true metrological level by applying cavity-based spin squeezing to a compact atomic clock, aiming to improve the clock stability beyond one part in 10^-13 in one second. In a new experiment, we will generate multiparticle entangled states with high metrological gain by applying cavity-based entanglement schemes to alkaline earth-like atoms, the atomic species used in today’s most precise atomic clocks. In a second phase, a miniature quantum gas microscope will be added to this experiment, creating a rich new situation at the interface of quantum information, metrology, and cutting-edge quantum gas research. Finally, we will further improve the FFP microcavity technology itself to enable novel atom-light interfaces with a currently unavailable combination of strong coupling, efficient fiber coupling, and open access. This will open new horizons for light-matter interfaces not only in our experiments, but also in our partner groups working with trapped ions, diamond color centers, semiconductor quantum dots, carbon nanotubes and in quantum optomechanics.