Enhancers Decoding the Mechanisms Underlying CAD Risk
In recent years, genome-wide association studies (GWAS) have discovered hundreds of single nucleotide polymorphisms (SNPs) which are significantly associated with coronary artery disease (CAD). However, the SNPs identified by GWAS...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
NETSIM
An integrated study on three novel regulatory hubs in megaka...
3M€
Cerrado
RTI2018-102084-B-I00
INFERENCIA DE REDES DE REGULACION GENICA A PARTIR DE DATOS D...
99K€
Cerrado
FROM BENCH TO BEDSIDE
Role of microRNAs 143 and 145 in cardiovascular physiology a...
100K€
Cerrado
The B-MIracle
The function of B cells in myocardial infarction-accelerated...
1M€
Cerrado
PID2019-104367RB-I00
POTENCIALES MICRORNAS COMO NUEVAS DIANAS TERAPEUTICAS EN LA...
97K€
Cerrado
GENTRECAD
GENOME WIDE CHARACTERIZATION OF TRANSCRIPTIONAL REGULATORY E...
171K€
Cerrado
Información proyecto EnDeCAD
Duración del proyecto: 67 meses
Fecha Inicio: 2018-11-15
Fecha Fin: 2024-06-30
Líder del proyecto
ITASUOMEN YLIOPISTO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
In recent years, genome-wide association studies (GWAS) have discovered hundreds of single nucleotide polymorphisms (SNPs) which are significantly associated with coronary artery disease (CAD). However, the SNPs identified by GWAS explain typically only small portion of the trait heritability and vast majority of variants do not have known biological roles. This is explained by variants lying within noncoding regions such as in cell type specific enhancers and additionally ‘the lead SNP’ identified in GWAS may not be the ‘the causal SNP’ but only linked with a trait associated SNP. Therefore, a major priority for understanding disease mechanisms is to understand at the molecular level the function of each CAD loci. In this study we aim to bring the functional characterization of SNPs associated with CAD risk to date by focusing our search for causal SNPs to enhancers of disease relevant cell types, namely endothelial cells, macrophages and smooth muscle cells of the vessel wall, hepatocytes and adipocytes. By combination of massively parallel enhancer activity measurements, collection of novel eQTL data throughout cell types under disease relevant stimuli, identification of the target genes in physical interaction with the candidate enhancers and establishment of correlative relationships between enhancer activity and gene expression we hope to identify causal enhancer variants and link them with target genes to obtain a more complete picture of the gene regulatory events driving disease progression and the genetic basis of CAD. Linking these findings with our deep phenotypic data for cardiovascular risk factors, gene expression and metabolomics has the potential to improve risk prediction, biomarker identification and treatment selection in clinical practice. Ultimately, this research strives for fundamental discoveries and breakthrough that advance our knowledge of CAD and provides pioneering steps towards taking the growing array of GWAS for translatable results.