Enhanced Microbial Electrosynthesis and Visualization of Microbial Metabolism
Microbial electrosynthesis (MES) is a novel strategy in which microbes accept electrons from a cathodic surface to synthesize high-value chemicals and fuels via the reduction of carbon dioxide. A cathode material is an essential c...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PROTO-BACT
Bottom-up chemical construction of photosynthetic cyanobacte...
173K€
Cerrado
PID2020-116093RB-C43
NANOSCOPIAS ELECTRONICAS AVANZADAS APLICADAS A LA INVESTIGAC...
206K€
Cerrado
HYBRID NANOMATERIALS
Development of Hybrid Nanostructures for Photocatalysis and...
100K€
Cerrado
2D-4-CO2
DESIGNING 2D NANOSHEETS FOR CO2 REDUCTION AND INTEGRATION IN...
1M€
Cerrado
CTQ2015-65202-C2-2-R
NUEVOS ELECTRODOS CERAMICOS MEJORADOS MEDIANTE NANOTECNOLOGI...
150K€
Cerrado
FuturoLEAF
Leaf inspired nanocellulose frameworks for next generation p...
3M€
Cerrado
Información proyecto EMES
Duración del proyecto: 34 meses
Fecha Inicio: 2017-02-22
Fecha Fin: 2019-12-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Microbial electrosynthesis (MES) is a novel strategy in which microbes accept electrons from a cathodic surface to synthesize high-value chemicals and fuels via the reduction of carbon dioxide. A cathode material is an essential component of MES and hence the development of improved cathode materials is critical to enhance the performance of MES. The proposed work tackles the largely unexplored challenge to develop highly efficient cathode materials using hollow nanostructures and three dimensional graphene scaffolds to maximize biofuel production through MES. The electro-activity of the microbes at the hollow cavities is extremely fascinating as the cavities can behave like nano-reactors. Also, the proposed project will design a p-type CaFe2O4 semiconductor/Shewanella biofilm hybrid system as a photobiocathode to power MES with solar light through photo-generated electrons. Finally, a novel analytical technique will be developed to visualize the metabolic activity of the cathode-attached microbes using a fluorescent dye, redox sensor green (RSG). RSG coupled with microscopy can be used to directly visualize the metabolism of Shewanella oneidensis MR-1 attached on the cathodic surface. MES technology has already found early commercial applications in the US; this project aims to be a catalyst to stimulating the industrial sector in the EU to invest and develop this field. The proposed research falls into the category of EU climate and energy policies, and Europe Horizon 2020 strategy to reduce greenhouse gas emissions. Strong long lasting collaborations would be established during the research project that can create career opportunities for the applicant.