Engineering of a minimal bacterial therapeutic chassis
Engineering bacteria to deliver therapeutic agents or to present antigens for vaccination is an emerging area of research with great clinical potential. The most challenging issue in this field is the selection of the right bacter...
Engineering bacteria to deliver therapeutic agents or to present antigens for vaccination is an emerging area of research with great clinical potential. The most challenging issue in this field is the selection of the right bacteria to engineer, commonly known as chassis. The best chassis depends on the application but there is a common drawback in bacteria used nowadays: their complexity and the lack of quantitative information for many reactions which limits genome engineering to classical trial and error approaches. In this project, we want to engineer the genome-reduced bacterium M. pneumoniae using a whole-cell model that will drive the rational to create a chassis for human and animal therapy. Its small size (816 Kbases), the lack of cell wall, and the vast amount of comprehensive quantitative –omics datasets makes this bacterium one of the best candidates for chassis design. By combining bioinformatics, -omics, and biochemistry approaches with genome engineering tools, systems biology analyses, and computational whole-cell models, MYCOCHASSIS aims to: i) develop a whole cell-model based on organism-specific experimental data that will be validated experimentally and that can predict the impact of genome modifications; ii) implement genome engineering tools to delete non-essential pathogenic and virulent elements predicted by the whole-cell model to engineer a therapeutical chassis; iii) using the whole-cell model design and engineer genes and circuits to improve growth rate in a defined medium. iv) as a proof of concept introduce orthogonal gene circuits to secrete peptides and enzymes capable of dissolving in vitro biofilms made by the lung pathogens Pseudomonas aeruginosa and Staphylococus aureus. This project will validate the usefulness of whole-cell models for synthetic biology by modelling multiple genomic modifications orientated to facilitate engineering of biological systems.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.