Engineering Interfacial Fluid Trapping for Localized Treatment of Brain Aneurysm...
Engineering Interfacial Fluid Trapping for Localized Treatment of Brain Aneurysms
Intravascular medical treatments for cardiovascular diseases are progressing to include the ability to navigate to distal disease sites. However most approaches for localized treatment rely on the use of solid implants, such as st...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
RTC2019-007260-1
Desarrollo y validación preclínica de un dispositivo médico...
522K€
Cerrado
OXIFLOW
Next Generation Flow Diverter for the Treatment of Intracran...
4M€
Cerrado
PANDORA
Platelets at the nexus of brain aneurysm
173K€
Cerrado
PTQ2020-011126
Desarrollo y validación preclínica de un nuevo sistema endov...
39K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Intravascular medical treatments for cardiovascular diseases are progressing to include the ability to navigate to distal disease sites. However most approaches for localized treatment rely on the use of solid implants, such as stents and metallic coils for embolizing aneurysms, or on direct injection of the therapeutic agent, such as a clot-busting agent, which can further disperse away from the required site of action reducing the therapeutic effect and causing off-target side effects. Thus, there is a need for new approaches to localize treatment that can allow confining a therapeutic agent, such as a potent drug or an injectable biomaterial, to the disease site. The goal of this proposal is to engineer a novel localized intravascular treatment strategy that leverages surface tension to gently isolate and focally treat diseased sites. Fluid confinement and immiscible fluids dynamics have not been explored so far in physiological systems, such as the cardiovascular system. The development of such an approach can be used to locally treat life-threatening conditions such as: clots, plaques, tumours and aneurysms- blood filled saccular lesions. Here we develop the proposed strategy while demonstrating it on treatment of brain aneurysms, where current approaches using metallic implants, carry a significant risk of procedural morbidity and increased risk of thrombolytic complication. In this research which will advance understanding in fundamental transport phenomena and work towards translation to the clinic, we aim to: 1) Fundamentals: Test and optimize the fluid trapping phenomenon in silico and in vitro in reconstructed models of aneurysms 2) In vitro to in vivo: remotely embolize aneurysms using injectable biomaterials 3) From Bench to Bed: explore a universal surface tension ‘Glider’ for sealing and localized treatment while allowing continuous blood flow.