Emergent phenomena at oxide interfaces have been recognized as one of 2007’s top ten breakthroughs, exciting great interest. Just as the engineering of physical properties at semiconductor interfaces was the crucial step in Si-bas...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
BES-2013-065888
CORRELACIONES, ASPECTOS CUANTICOS Y TOPOLOGIA EN MATERIALES...
84K€
Cerrado
BES-2016-078122
CORRELACIONES, ASPECTOS CUANTICOS Y TOPOLOGIA EN MATERIALES...
93K€
Cerrado
PID2021-125343NB-I00
CORRELACIONES, SUPERCONDUCTIVIDAD Y TOPOLOGIA EN MATERIALES...
139K€
Cerrado
SuperSpinHyMol
Modelling superconductivity and spin related effects in hybr...
159K€
Cerrado
RYC-2010-06157
Interface effects on complex oxides investigated by synchrot...
192K€
Cerrado
MAT2017-82074-ERC
CORRELACION ENTRE LAS PROPIEDADES A LA ESCALA ATOMICA Y EL T...
68K€
Cerrado
Información proyecto OXIDES
Líder del proyecto
UNIVERSITE DE LIEGE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
3M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Emergent phenomena at oxide interfaces have been recognized as one of 2007’s top ten breakthroughs, exciting great interest. Just as the engineering of physical properties at semiconductor interfaces was the crucial step in Si-based electronics, the next great advance might rely on the multiple novel functionalities of oxide interfaces. The consortium OxIDES will (i) develop theoretical and simulation techniques to model the most relevant types of oxide interfaces and (ii) use them to design a new generation of layered materials with unique experimentally-confirmed properties. The theoretical work will combine first and second principles methods in a multi-scale approach. The experimental partners will guide the choice of relevant systems, grow and characterize the most promising structures, and explore their technological applications. This continuous collaboration is essential to guarantee that the theoretical developments are experimentally validated, and is also the most promising avenue towards the discovery of new and technologically important phenomena. In OxIDES we will consider three types of interfaces: insulating interfaces between insulating oxides, where novel couplings between structural instabilities can lead to unusual phenomena such as improper ferroelectricity; conducting interfaces between insulating oxides, where an interfacial 2-dimensional electron gas might exhibit large thermoelectric power; and interfaces between metallic and insulating oxides, for a deeper understanding of screening. All these are potentially interesting for use in microelectronic devices or energy harvesting. Yet, advancing from basic concepts to applications remains a challenge, and both quantum-mechanical simulations and experimental methods need to be developed to tackle it successfully. Directly addressing the present limitations of oxide interface simulations to make progress in this emergent field is the goal of OxIDES.