Engineering cancer dormancy as a collective emergent phenomenon from matrix ena...
Engineering cancer dormancy as a collective emergent phenomenon from matrix enabled dormancy to collective dormancy on a chip
Cancer dormancy and the trigger to transition to active metastatic growth is a big open question. Current in vivo models focus on niche-specific cell and molecular mechanisms, ignoring biophysical aspects. Dormancy evolves with co...
Cancer dormancy and the trigger to transition to active metastatic growth is a big open question. Current in vivo models focus on niche-specific cell and molecular mechanisms, ignoring biophysical aspects. Dormancy evolves with complex spatio-temporal dynamics; yet, there is a knowledge gap in the understanding of the heterogeneity of the units, and the dynamics of their interaction and evolution. Emergence occurs when a critical mass of units synergistically communicates giving rise to a new macro-level organization, with properties greater than the sum of the units. Engineering emergent phenomena in biological systems is a big research challenge as they originate from multiscale communication.
In DORMATRIX, I propose a radically new view. I hypothesize that the balance between cancer dormancy and awakening is a collective emergent phenomenon, whereby a critical mass of micro-units communicates with each other and the environment in order to transition to metastatic growth. The main objective of DORMATRIX is to engineer breast cancer (BC) dormancy as a collective emergent phenomenon using biomaterials-based dormancy-on-a-chip devices.
My previous data shows that we can (i) apply biophysical cues to control BC proliferation and (ii) visualize in vivo early BC bone metastasis. I will now address this outstanding challenge with a multidisciplinary approach and 1) apply biophysical principles with novel biomaterials to model in vitro cancer micro-units, 2) develop advanced 3D imaging to visualize collective cancer dormancy and bone microdamage, 3) develop in silico models based on evolutionary game theory to predict the dynamics, and 4) prove my hypothesis with dormancy-on-a-chip devices. Understanding the critical mass and multiscale communication required for emergent phenomena will enable the development of novel therapies to delay or prevent metastasis. The resulting technology for engineering emergent phenomena will spark research on other biological systems.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.