Engineered Porous Electrodes to Unlock Ultra-low Cost Fe-Air Redox Flow Batteries
This proposal will develop a game-changing paradigm to design, synthesize, and functionalize porous electrode materials with far-reaching consequences in electrochemical science and engineering. Focusing on the Fe-air redox flow b...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TOPESMASH
Topology Optimization of Porous Electrodes using Scalable Mo...
203K€
Cerrado
EIN2020-112247
DISEÑO, MODELADO Y CARACTERIZACION EXPERIMENTAL DE MEDIOS PO...
10K€
Cerrado
MAT2012-39199-C02-02
EFECTOS DE TEXTURA Y COMPOSICION EN ELECTRODOS DE CARBON PAR...
53K€
Cerrado
NanOBatt
Nanoporous and redox-active hoops and macrocycles as organic...
2M€
Cerrado
MOOiRE
Mix in Organic InOrganic Redox Events for High Energy Batter...
2M€
Cerrado
MAT2010-19837-C06-03
MATERIALES MICROCRISTALINOS Y NANOPOROSOS PARA ELECTRODOS DE...
97K€
Cerrado
Información proyecto FAIR-RFB
Duración del proyecto: 69 meses
Fecha Inicio: 2022-03-01
Fecha Fin: 2027-12-31
Descripción del proyecto
This proposal will develop a game-changing paradigm to design, synthesize, and functionalize porous electrode materials with far-reaching consequences in electrochemical science and engineering. Focusing on the Fe-air redox flow battery (FAIR-RFB), which holds promise for low-cost, long duration energy storage, I will employ an interdisciplinary approach bridging (electro)chemical engineering, materials science, and computational design to address the following fundamental challenges:
(1) I will elucidate the role of the porous electrode microstructure. I will introduce a new methodology that couples evolutionary algorithms with microstructure-informed simulations to predict ideal electrode geometries. A versatile synthetic platform, non-solvent induced phase separation, will be leveraged to synthesize highly controlled 3D microstructures and train neural networks to accelerate the discovery of optimal geometries.
(2) I will determine to what extent surface moieties of the porous electrode influence transport phenomena, kinetics, and durability. I will employ electrografting of select molecules to functionalize porous electrodes and impart functional properties (wettability, activity, stability). I will perform nanoelectrochemical imaging to elucidate the role of electrode-coating-electrolyte phenomena.
(3) I will develop a novel electrochemical reactor architecture for high-power Fe-air RFBs. Building upon the two previous developments, I will synthesize tailored iron and air electrodes and leverage polymeric bipolar membranes to realize a high voltage and low resistance electrochemical cell. Advanced imaging techniques, i.e. energy- and wavelength-selective neutron imaging, will be employed to visualize reactive transport phenomena during operation, thus helping to address these questions.
The novel approaches developed in FAIR-RFB will enable breakthroughs in performance and durability of large-scale electrochemical energy storage systems.