This proposal will develop a game-changing paradigm to design, synthesize, and functionalize porous electrode materials with far-reaching consequences in electrochemical science and engineering. Focusing on the Fe-air redox flow b...
ver más
Descripción del proyecto
This proposal will develop a game-changing paradigm to design, synthesize, and functionalize porous electrode materials with far-reaching consequences in electrochemical science and engineering. Focusing on the Fe-air redox flow battery (FAIR-RFB), which holds promise for low-cost, long duration energy storage, I will employ an interdisciplinary approach bridging (electro)chemical engineering, materials science, and computational design to address the following fundamental challenges:
(1) I will elucidate the role of the porous electrode microstructure. I will introduce a new methodology that couples evolutionary algorithms with microstructure-informed simulations to predict ideal electrode geometries. A versatile synthetic platform, non-solvent induced phase separation, will be leveraged to synthesize highly controlled 3D microstructures and train neural networks to accelerate the discovery of optimal geometries.
(2) I will determine to what extent surface moieties of the porous electrode influence transport phenomena, kinetics, and durability. I will employ electrografting of select molecules to functionalize porous electrodes and impart functional properties (wettability, activity, stability). I will perform nanoelectrochemical imaging to elucidate the role of electrode-coating-electrolyte phenomena.
(3) I will develop a novel electrochemical reactor architecture for high-power Fe-air RFBs. Building upon the two previous developments, I will synthesize tailored iron and air electrodes and leverage polymeric bipolar membranes to realize a high voltage and low resistance electrochemical cell. Advanced imaging techniques, i.e. energy- and wavelength-selective neutron imaging, will be employed to visualize reactive transport phenomena during operation, thus helping to address these questions.
The novel approaches developed in FAIR-RFB will enable breakthroughs in performance and durability of large-scale electrochemical energy storage systems.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.