Protein signaling in cells is precisely coordinated in space and time. Molecular chemogenetics, optogenetics, and biosensors have generated a scientific revolution enabling the spatiotemporal codes of protein signaling in single c...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
JCI-2009-03916
Neurobiotecnología molecular y celular.
101K€
Cerrado
BFU2015-72831-EXP
SINAPSIS NO NEURONAL PARA LA SEÑALIZACION CELULAR
54K€
Cerrado
BFU2014-59438-P
BASES CELULARES Y DINAMICA DE LA COMUNICACION INTERCELULAR E...
Cerrado
BFU2015-65685-P
SEÑALES MOLECULARES SINAPTOGENICAS ENTRE NEURONAS Y GLIA
261K€
Cerrado
PID2021-127671NB-I00
INGENIERIA DE CIRCUITOS GENETICOS CON CABLEADO LUMINICO Y QU...
145K€
Cerrado
BES-2011-047189
REGULACION DE LA MORFOGENESIS DEL SISTEMA VISUAL: PAPEL DE V...
21K€
Cerrado
Información proyecto E-CTRL
Duración del proyecto: 62 meses
Fecha Inicio: 2023-02-01
Fecha Fin: 2028-04-30
Líder del proyecto
KAROLINSKA INSTITUTET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Descripción del proyecto
Protein signaling in cells is precisely coordinated in space and time. Molecular chemogenetics, optogenetics, and biosensors have generated a scientific revolution enabling the spatiotemporal codes of protein signaling in single cells. However, it is a great challenge to study protein dynamics in a physiological multicellular environment due to the extensive variability in protein signaling within individual cells, as well as the sparsity of driver cells responsible for a specific physiological process. To build causal relationships between proteins and multi-cellular behavior, we will develop broadly applicable technologies by engineering proteins enabling the control of target proteins with light, exclusively in the relevant driver cell subpopulations. These approaches can be used in any biological field in which protein signaling is critical for multi-cellular behavior, but here we will focus on three different stages of a challenging neurobiology process. Upon sensory experience, for example, by learning a new task, only the subsets of neurons within a corresponding brain region switch to the active state. It is largely unknown how proteins that are activated in these sparsely activated neuronal circuits operate in space and time. Our technologies will enlighten the spatiotemporal dynamics of proteins in active neuron subpopulations responding to certain learning tasks in mice. Understanding such learning neuronal circuit responses at the molecular level will pave the way to develop new therapeutic approaches for brain disorders including epilepsy, depression, and autism spectrum disorders.