Energy-efficient hardware implementation of memristor-based in-memory computing
Neuromorphic engineering is an emerging bio-inspired discipline that morphs the biological brain on custom silicon. Although memristors rose as a potential synapse to solve the density challenge in a memristive crossbar, the scala...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
Ferro4EdgeAI
Scalable, ferroelectric based accelerators for energy effici...
4M€
Cerrado
REMINDER
Revolutionary embedded memory for internet of things devices...
5M€
Cerrado
SelectX
Integrated Crossbar of Microelectromechanical Selectors and...
125K€
Cerrado
ANDANTE
Ai for New Devices And Technologies at the Edge
41M€
Cerrado
NimbleAI
ULTRA ENERGY EFFICIENT AND SECURE NEUROMORPHIC SENSING AND P...
9M€
Cerrado
2D PHrOSEN
2D Material-based Non Volatile-PHotOnic Synapsis for ultra-l...
203K€
Cerrado
Información proyecto EEHIMIC
Duración del proyecto: 37 meses
Fecha Inicio: 2023-07-03
Fecha Fin: 2026-08-31
Líder del proyecto
POLITECNICO DI MILANO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
189K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Neuromorphic engineering is an emerging bio-inspired discipline that morphs the biological brain on custom silicon. Although memristors rose as a potential synapse to solve the density challenge in a memristive crossbar, the scalability of the crossbar is limited by its power dissipation and chip area. To contribute to low power dissipation, I focus on improving the energy efficiency of the synapses (non-filamentary category) and neurons, which are the fundamental constituents of the neural network-enabled IOTs. The energy efficiency of the synapses will be improved by applying fast switching pulses on the bulk-based synapses that result in low switching currents. The energy efficiency of the neurons will be improved by taking advantage of the FDSOI28nm technology node by which the neurons are designed. A dedicated PCB will be designed, assembled and mounted that house both the synapses, and the neurons, which will be energy-efficiently used to recognize digits or letters by unsupervised learning rule.