Energy-efficient Artificial Synapses based on Innovative Ferroelectric Transisto...
The exponential growth of demand for data processing requires increasingly large computational resources and, consequently, prohibitively high energy consumption. To sustain this evolution, a paradigm switch from conventional comp...
The exponential growth of demand for data processing requires increasingly large computational resources and, consequently, prohibitively high energy consumption. To sustain this evolution, a paradigm switch from conventional computing architectures to data-centric platforms is needed. Neuromorphic computing aims at reaching this goal by realizing brain-inspired circuits based on artificial neurons and synapses, which are extremely energy efficient. The objective of this project is to explore a novel type of artificial synapse to be employed in neuromorphic chips. Among the technological options for solid state synapses, memories based on ferroelectric field-effect transistors (FeFET) are considered very promising due to their energy efficiency and to their compatibility with a Back-End-Of-Line implementation and thus a 3D integration. A FeFET is a field-effect transistors that employs a ferroelectric (FE) material as gate oxide. FE materials have a spontaneous electric polarization that can be reversed by the application of an electric field, and in conventional FeFETs this is used to modulate the threshold voltage and thus resistance in the channel region. This project will address an alternative physical mechanism to obtain a synaptic behavior in FeFET, namely a polarization-induced tuning of the resistance at source/drain Schottky contacts. In the Ferroelectric Schottky barrier FETs (Fe-SBFETs), the FE material overlaps the Schottky contact region, hence in this region the FE material is placed between two metals resulting in an effective and low voltage ferroelectric switching. For this reason, Fe-SBFETs are expected to operate as low energy synaptic devices. In this project, Fe-SBFETs will be extensively studied and modeled, by means of TCAD simulations. A design-space for optimal synaptic operation will be derived. Finally, a compact model for SPICE simulations of neuromorphic circuits based on Fe-SBFETs will be developed.ver más
06-11-2024:
IDAE Cadena de Valor...
Se ha cerrado la línea de ayuda pública: Ayudas a Proyectos para reforzar la Cadena de Valor de equipos necesarios para la transición a una economía de cero emisiones netas
05-11-2024:
Cataluña Gestión For...
Se abre la línea de ayuda pública: Gestión Forestal Sostenible para Inversiones Forestales Productivas para el organismo:
04-11-2024:
Doctorados industria...
Se ha cerrado la línea de ayuda pública: Formación de doctores y doctoras de las universidades del Sistema universitario de Galicia (SUG) en empresas y centros de innovación y tecnología para el organismo:
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.