Energy efficient membranes for carbon capture by crystal engineering of two dime...
Energy efficient membranes for carbon capture by crystal engineering of two dimensional nanoporous materials
The EU integrated strategic energy technology plan, SET-plan, in its 2016 progress report, has called for urgent measures on the carbon capture, however, the high energy-penalty and environmental issues related to the conventional...
ver más
27-11-2024:
Videojuegos y creaci...
Se abre la línea de ayuda pública: Ayudas para la promoción del sector del videojuego, del pódcast y otras formas de creación digital
27-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 1 concesiones
Descripción del proyecto
The EU integrated strategic energy technology plan, SET-plan, in its 2016 progress report, has called for urgent measures on the carbon capture, however, the high energy-penalty and environmental issues related to the conventional capture process (amine-based scrubbing) has been a major bottleneck. High-performance membranes can reduce the energy penalty for the capture, are environment-friendly (no chemical is used, no waste is generated), can intensify chemical processes, and can be employed for the capture in a decentralized fashion. However, a technological breakthrough is needed to realize such chemically and thermally stable, high-performance membranes. This project seeks to develop the ultimate high-performance membranes for H2/CO2 (pre-combustion capture), CO2/N2 (post-combustion capture), and CO2/CH4 separations (natural gas sweetening). Based on calculations, these membranes will yield a gigantic gas permeance (1 and 0.1 million GPU for the H2 and the CO2 selective membranes, respectively), 1000 and 10-fold higher than that of the state-of-the-art polymeric and nanoporous membranes, respectively, reducing capital expenditure per unit performance and the needed membrane area. For this, we introduce three novel concepts, combining the top-down and the bottom-up crystal engineering approaches to develop size-selective, chemically and thermally stable, nanoporous two-dimensional membranes. First, exfoliated nanoporous 2d nanosheets will be stitched in-plane to synthesize the truly-2d membranes. Second, metal-organic frameworks will be confined across a nanoporous 2d matrix to prepare a composite 2d membrane. Third, atom-thick graphene films with tunable, uniform and size-selective nanopores will be crystallized using a novel thermodynamic equilibrium between the lattice growth and etching. Overall, the innovative concepts developed here will open up several frontiers on the synthesis of high-performance membranes for a wide-range of separation processes.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.