Innovating Works

EEDDMA

Financiado
Energy Efficient Design with Dynamic Metasurface Antennas
Reducing greenhouse gas (GHG) emissions is a worldwide priority and one of the Horizon Europe Missions. Smart cities, e-banking, industrial automation, and the Internet of Things (IoT) – together with other multiple services enabl... Reducing greenhouse gas (GHG) emissions is a worldwide priority and one of the Horizon Europe Missions. Smart cities, e-banking, industrial automation, and the Internet of Things (IoT) – together with other multiple services enabled by mobile communications – contributed to reduce around 2,135 million tonnes of GHG emissions in 2018, giving raise to the so-called enabling effect of mobile technologies. 5G and 6G are expected to even increase this effect by delivering an unprecedented fabric of massive connectivity to millions of users and interconnected devices. Paradoxically, despite being more efficient in terms of transmitted bits per joule, a 5G cell could consume up to 140% more energy than a 4G one for covering the same area, mainly due to the use of massive antenna arrays, higher frequency bands and high base station (BS) density. With 73% of the total energy consumed in the radio access network, designing more efficient BS hardware and an energy-aware network design arise as mandatory directions. In this project, an energy efficient design of 5G and 6G networks will be addressed. First, the use of the recently proposed dynamic metasurface antennas (DMAs) will be explored as alternative to conventional arrays, characterising the energy savings provided by these structures. Second, intra-cell (turning off parts of the DMA at the BS) and inter-cell (switching off entire BSs) sleep modes algorithms will be designed for low load periods of time, accounting for the interaction between them while meeting quality of service constraints. Finally, the proposed solutions will be validated, and the benefits with respect to conventional and state-of-the-art approaches. ver más
30/06/2026
UMA
165K€
Duración del proyecto: 35 meses Fecha Inicio: 2023-07-13
Fecha Fin: 2026-06-30

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2023-07-13
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 165K€
Líder del proyecto
UNIVERSIDAD DE MÁLAGA No se ha especificado una descripción o un objeto social para esta compañía.
Total investigadores 1949