Energy and Size efficient Ultra fast Plasmonic Circuits for Neuromorphic Comput...
Energy and Size efficient Ultra fast Plasmonic Circuits for Neuromorphic Computing Architectures
PlasmoniAC invests in neuromorphic computing towards sustaining processing power and energy efficiency scaling, adopting the best-in-class material and technology platforms for optimizing computational power, size and energy at ev...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ChipAI
Energy efficient and high bandwidth neuromorphic nanophotoni...
4M€
Cerrado
TNext
Tellurene Memristors for Neuromorphic Computing System Techn...
Cerrado
MELON
Memristive and multiferroic materials for emergent logic uni...
1M€
Cerrado
SUPERMEM
Superconducting memristors for memory and neuromorphic appli...
150K€
Cerrado
SYNAPSOTON
Transforming Data Processing Efficiency: Pioneering Memory F...
181K€
Cerrado
SelectX
Integrated Crossbar of Microelectromechanical Selectors and...
125K€
Cerrado
Información proyecto PlasmoniAC
Duración del proyecto: 45 meses
Fecha Inicio: 2019-12-05
Fecha Fin: 2023-09-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
PlasmoniAC invests in neuromorphic computing towards sustaining processing power and energy efficiency scaling, adopting the best-in-class material and technology platforms for optimizing computational power, size and energy at every of its constituent functions. It employs the proven high-bandwidth and low-loss credentials of photonic interconnects together with the nm-size memory function of memristor nanoelectronics, bridging them by introducing plasmonics as the ideal technology for offering photonic-level bandwidths and electronic-level footprint computations within ultra-low energy consumption envelopes. Following a holistic hardware/software co-design approach, PlasmoniAC targets the following objectives: i) to elevate plasmonics into a computationally-credible platform with Nx100Gb/s bandwidth, um2-scale size and >1014 MAC/s/W computational energy efficiency, using CMOS compatible BTO and SiOC materials for electro- and thermo-optic computational functions, ii) to blend them via a powerful 3D co-integration platform with SixNy-based photonic interconnects and with non-volatile memristor-based weight control, iii) to fabricate two different sets of 100Gb/s 16- and 8-fan-in linear plasmonic neurons, iv) to deploy a whole new class of plasmo-electronic and nanophotonic activation modules, v) to demonstrate a full-set of sin2(x), ReLU, sigmoid and tanh plasmonic neurons for feed-forward and recurrent neurons, v) to embrace them into a properly adapted Deep Learning training model suite, ultimately delivering a neuromorphic plasmonic software design library, and vi) to apply them on IT security-oriented applications for threat and malware detection. Succeeding in its targets will release a powerful artificial plasmonic neuron suite with up to 3 orders of magnitude higher computational efficiencies per neuron and 1 and 6 orders of magnitude higher energy and footprint efficiencies, respectively, compared to the top state-of-the-art neuromorphic machines.