Innovating Works

ENTRAIN

Financiado
ENdoThelial macRophage Alliance In Neuroinflammation
Neurological diseases cause enormous suffering and a great economic burden. Almost 20 million Europeans are affected by the most frequently occurring and disabling disease entities, such as stroke, Alzheimer’s disease (AD), or mul... Neurological diseases cause enormous suffering and a great economic burden. Almost 20 million Europeans are affected by the most frequently occurring and disabling disease entities, such as stroke, Alzheimer’s disease (AD), or multiple sclerosis (MS), and these numbers do not include the large group of rare diseases that affect the CNS. Overall, the annual costs for patient care amount to 400 billion Euros. Common features of many neurological diseases are a vascular pathology with impaired blood-brain barrier (BBB) function or with reduced blood flow and inflammatory changes. As the two are often associated, disentangling their intricate and mutual relationship is a major task for translational neuroscience that could improve the treatment of many neurological diseases. At the cellular level, key players are brain endothelial cells as the building blocks of cerebral vessels and macrophages as the main inflammatory cells of the brain. Recent discoveries indicate that endothelial cells and brain macrophages are in intimate contact and closely interact. However, there is a huge gap of knowledge regarding the specific mode and the consequences of these interactions. Therefore, in-depth analyses of the molecular mechanisms involved are essential to identify and understand key features of macrophage-endothelial cross-talk, and exploitation of this information for the development of treatments of neurological diseases. ENTRAIN will undertake this task, using novel and emerging technologies, such as cutting-edge chemoproteomics, unique genetic and viral tools for targeting of defined cell populations, and high resolution intravital imaging. By characterising the pas de deux of endothelial cells and macrophages at the functional and morphological level, we will lay the foundation for better therapies for neurological diseases. The results will impact on the understanding of neuroinflammation, but also on the rarefaction of vessels. ver más
30/04/2023
UZL
4M€
Duración del proyecto: 47 meses Fecha Inicio: 2019-05-07
Fecha Fin: 2023-04-30

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2023-04-30
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 4M€
Líder del proyecto
UNIVERSITAET zu LUEBECK No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5