ENDING COVID 19 VARIANTS OF CONCERN THROUGH COHORT STUDIES: END-VOC
The END-VOC consortium will support the European and global response to the COVID-19 pandemic and Variants of Concern (VOC) through well characterised cohorts and linked with existing European and international initiatives. END-VO...
The END-VOC consortium will support the European and global response to the COVID-19 pandemic and Variants of Concern (VOC) through well characterised cohorts and linked with existing European and international initiatives. END-VOC consists of 19 partners in Europe (UK, Spain, Italy, Germany, Netherlands, Norway, Italy), South America (Brazil and Peru), Africa (Mozambique, South Africa, Nigeria and 13 ANTICOV African countries), Middle East (Palestine) and Asia (India, Pakistan, Philippines) with a focus on countries affected by VOCs and VOIs. We will elucidate the global circulation of the current and emerging SARS-CoV-2 VOCs and their characteristics, including transmissibility, pathogenicity and propensity to cause reinfection, to support best control strategies and the development of diagnostics; evaluate the impact of VOCs on the effectiveness of different vaccines and vaccination strategies; and assess the implications of VOCs on the choice of optimal treatment options. END-VOC will also investigate how VOCs alter long-term post-infection sequelae and where new VOCs emerge within hosts using our clinical cohorts. We will inform future preparedness and response working closely with international and national public health organisations and existing cohort consortia. Specific beyond state-of-the-art components of END-VOC include the use of novel phylogenetic prediction tools and mathematical modelling; generation of powerful cohorts through sentinel surveillance in low and middle income settings and cohorts of travellers to increase our global reach; use of novel predictive modelling of clinical outcomes by VOC and comorbidity/treatment and evaluation of differences in natural and vaccine immunity by VOC; antiviral screening models within cohorts and an artificial intelligence driven tool for the prediction of long COVID.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.