Innovating Works

ECHO-GRACADE

Financiado
Enantioselective C H Oxidation Guided by Rational Catalyst Design
Chemo- and enantioselective oxidation of aliphatic C-H bonds is a cornerstone reaction in metabolism. The ubiquitous presence of multiple and diverse C-H bonds in organic molecules is used by oxidative enzymes to deliver functiona... Chemo- and enantioselective oxidation of aliphatic C-H bonds is a cornerstone reaction in metabolism. The ubiquitous presence of multiple and diverse C-H bonds in organic molecules is used by oxidative enzymes to deliver functionality and chirality to metabolite precursors, rapidly creating product diversity. Despite its huge potential in organic synthesis, non-enzymatic enantioselective C-H oxidation of aliphatic sites remains inaccessible and has never been incorporated in synthesis. Harnessing the power of this reaction will open straightforward, yet currently inaccessible, paths in synthetic planning. However, realization of this goal requires conceptual breakthroughs in order to chemo-, regio- and stereo-selectively create a C-O bond from a non-activated alkyl C-H bond, even in the presence of a priori more reactive groups. In this project, chemo-, and site-selective asymmetric aliphatic oxidation is targeted by taking advantage of; a) stereoretentive enzyme-like metal-based C-H oxidations performed by small molecule manganese catalysts, devised as minimalistic hydroxylases, and b) polarity reversal exerted by fluorinated alcohol solvents in electron-rich functional groups, which enable chemoselective C-H hydroxylation of densely functionalized molecules. Desymmetrization via enantioselective C-H oxidation is devised as a powerful type of reaction that will create multiple chiral centers in a single step. Building on the rich chemical diversity and modular architecture of aminopyridine manganese complexes, rapid elaboration of libraries of catalysts is targeted. Rational manipulation of steric, electronic, directing effects and supramolecular substrate recognition factors guided by multiple parametrization analyses will be employed for directing evolution in catalyst design. This project will provide the catalysts and their use in paradigmatic reactions in order to establish enantioselective C-H oxidation as a reliable tool in organic synthesis. ver más
31/12/2025
UDG
2M€
Duración del proyecto: 67 meses Fecha Inicio: 2020-05-04
Fecha Fin: 2025-12-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2020-05-04
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2019-ADG: ERC Advanced Grant
Cerrada hace 5 años
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
UNIVERSITAT DE GIRONA No se ha especificado una descripción o un objeto social para esta compañía.
Total investigadores 226