ENabling Self-Driving in Uncertain Real Environments
ENSURE addresses the challenge of self-driving in uncertain situations of the real world. Due to the difficulty of reasoning in complex real-world scenarios, self-driving remains one of the most difficult research problems today....
ENSURE addresses the challenge of self-driving in uncertain situations of the real world. Due to the difficulty of reasoning in complex real-world scenarios, self-driving remains one of the most difficult research problems today. For safe navigation, the driving agent needs to be able to anticipate the consequences of its actions. Current solutions are reactive without any planning for what might happen in the future. This poses major safety issues and delays the deployment of self-driving vehicles. Without a change in our approach to self-driving, we risk not only realizing fully autonomous driving but also half-baked solutions that endanger lives in uncertain situations. The future is inherently uncertain due to some scene structures such as intersections and the unknown intentions of the other agents. The errors in the perception of the scene and the prediction of the future cause another type of uncertainty. Furthermore, there are rarely encountered situations that might require passing the control to the human driver such as an unknown object on the road. As a way of managing uncertainties in the real world, ENSURE proposes a world model to predict the future with different types of uncertainty in a compact bird's eye view representation. To realize the potential of the world model, ENSURE will put it into action first online in simulation and push its performance to the limit under a controlled setting. The most ambitious goal of ENSURE is to learn to drive in an offline manner from already collected real driving data based on the predictions of the world model. The different types of uncertainties will be used to safeguard against the model's expected failures in the offline setting. Every step of ENSURE will build towards enabling end-to-end driving in the real world and its success in achieving this goal will allow similar success stories in other domains that require reasoning under uncertainty.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.