Enabling Multifunctional Plasmonics on Hybrid Artificial Scale Integrated System...
Enabling Multifunctional Plasmonics on Hybrid Artificial Scale Integrated Systems
Optical isolator, or optical diode, is a device, which allows the transmission of light in only one direction. They are used in fibre optic communication to prevent back reflections and improve signal-to-noise ratio. The developm...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TRUEVIEW
Time Resolved Ultrafast Electron Visualization of Evanescent...
199K€
Cerrado
PLASM-ON-FIBRE
Advanced plasmonic on fibre devices for optical communicatio...
15K€
Cerrado
ALLOPLASM
tunAble Liquid crystal LOng range surface PLASMon polariton...
180K€
Cerrado
PLASM-ON-FIBRE
Advanced plasmonic on fibre devices for optical communicatio...
231K€
Cerrado
PHOTON-PLASMONHYB
Photonic plasmonic hybrid for optical switching and biosensi...
231K€
Cerrado
TEC2010-21574-C02-02
DISPOSITIVOS DE FOTONICA INTEGRADA BASADOS EN CRISTALES DIEL...
197K€
Cerrado
Información proyecto EMPHASIS
Duración del proyecto: 41 meses
Fecha Inicio: 2017-03-17
Fecha Fin: 2020-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Optical isolator, or optical diode, is a device, which allows the transmission of light in only one direction. They are used in fibre optic communication to prevent back reflections and improve signal-to-noise ratio. The development of on-chip optical communications requires downscaling of optical components, e.g replacing optical fibres with nanoscale waveguides. The miniaturization of optical isolators is therefore a key step towards integrated photonic circuits. We approach this challenge by taking advantage of surface plasmon resonances that can squeeze light down to nanoscale dimensions. We combine plasmonic waveguides with ferroelectric and -magnetic materials that, in turn, break the space-inversion and time reversal symmetries to create non-reciprocal conditions for light propagation. The ferroelectric and magnetic materials provide us with an additional interesting advantage: their optical properties can be adjusted by applying external electric and magnetic fields, enabling active control over light in nanoscale. The proposed research project brings together the candidate’s expertise in plasmonics and the hosting group’s established knowledge in oxide thin films. This creates excellent conditions for training through research and knowledge transfer. We envision two significant outcomes: (i) demonstration of a proof-of-concept plasmonic isolator based on symmetry considerations and (ii) assessing the viability of using active oxide materials as tools to control plasmon propagation with external fields. The H2020 Innovation Union initiative strives to drive economic growth in the EU by innovation. In line with this strategy, we recognize that EMPHASIS offers ample potential for technological applications and include strategies to ensure that the potential can be realized.