Emergence of wild differentiable dynamical systems
Many physical or biological systems display time-dependent states which can be mathematically modelled by a differentiable dynamical system. The state of the system consists of a finite number of variables, and the short time evol...
Many physical or biological systems display time-dependent states which can be mathematically modelled by a differentiable dynamical system. The state of the system consists of a finite number of variables, and the short time evolution is given by a differentiable equation or the iteration of a differentiable map. The evolution of a state is called an orbit of the system. The theory of dynamical systems studies the long time evolution of the orbits.
For some systems, called chaotic, it is impossible to predict the state of an orbit after a long period of time. However, in some cases, one may predict the probability of an orbit to have a certain state. A paradigm is given by the Boltzmann ergodic hypothesis in thermodynamics: over long periods of time, the time spent by a typical orbit in some region of the phase space is proportional to the measure of this region. The concept of Ergodicity has been mathematically formalized by Birkhoff. Then it has been successfully applied (in particular) by the schools of Kolmogorov and Anosov in the USSR, and Smale in the USA to describe the statistical behaviours of typical orbits of many differentiable dynamical systems.
For some systems, called wild, infinitely many possible statistical behaviour coexist. Those are spread all over a huge space of different ergodic measures, as initially discovered by Newhouse in the 70's. Such systems are completely misunderstood. In 2016, contrarily to the general belief, it has been discovered that wild systems form a rather typical set of systems (in some categories).
This project proposes the first global, ergodic study of wild dynamics, by focusing on dynamics which are too complex to be well described by means of finitely many statistics, as recently quantified by the notion of Emergence. Paradigmatic examples will be investigated and shown to be typical in many senses and among many categories. They will be used to construct a theory on wild dynamics around the concept of Emergence.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.