Embedded learning and optimization for the next generation of smart industrial c...
Embedded learning and optimization for the next generation of smart industrial control systems
Thanks to the increasing capabilities of digital technologies, the next generation of industrial control systems are expected to learn from streams of data and to take optimal decisions in real-time, leading to increased performan...
Thanks to the increasing capabilities of digital technologies, the next generation of industrial control systems are expected to learn from streams of data and to take optimal decisions in real-time, leading to increased performance, safety, energy efficiency, and ultimately value creation.
Numerical optimization is at the very core of both learning and decision-making, and machine learning algorithms and artificial intelligence raise huge worldwide research interest, often using cloud computing and large data centers for their optimization computations.
However, in order to bring learning- and optimization-based automated decision-making into smart industrial control systems (SICS), two important bottlenecks have to be overcome: (1) computational resources on industrial control systems are locally embedded and limited, and (2) industrial control applications require reliable algorithms, with interpretable and verifiable behavior. Both requirements partially stem from safety aspects, which are crucial in applications where a single computation error can cause high economic and environmental cost or even damage to people.
Pushing the performance boundary of SICS to leverage advanced digital technologies will therefore involve both fundamental new research questions and technological solutions, calling for a new set of advanced methods for embedded learning- and optimization-based control algorithms. Through its 15 PhD students hosted and seconded at 11 top European research centers (6 academic, 5 industrial) and 4 partner organizations in the US, Japan and China, ELO-X will address the timely and pressing need for highly qualified and competent researchers who will develop embedded learning- and optimization-based control methodologies for SICS, thus enabling new and possibly game-changing digital technologies for important EU industries.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.