Elucidation of the different reaction mechanisms and pathways offered by the AOR
Green hydrogen produced from renewable electricity through water electrolysis can be converted via the energy-efficient Haber-Bosch process into green ammonia (NH3). Currently, large industrial efforts are under way to scale up pr...
ver más
CTQ2015-65268-C2-2-P
SINTESIS Y REACTIVIDAD DE COMPLEJOS CON LIGANDOS MULTIDENTAD...
36K€
Cerrado
Últimas noticias
27-11-2024:
Videojuegos y creaci...
Se abre la línea de ayuda pública: Ayudas para la promoción del sector del videojuego, del pódcast y otras formas de creación digital
27-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 1 concesiones
Descripción del proyecto
Green hydrogen produced from renewable electricity through water electrolysis can be converted via the energy-efficient Haber-Bosch process into green ammonia (NH3). Currently, large industrial efforts are under way to scale up production globally. With an expected surge in green NH3 supply, the question arises whether the stored energy can be released electrochemically in NH3 fuel cells. However, so far, high ammonia oxidation reaction (AOR) overpotentials and particularly a NO-poisoning mechanism have prevented application of low-temperature NH3 fuel cells. Therefore, this project focuses on the elucidation of key reaction mechanisms and pathways offered by the AOR (EluMecAOR). In particular, I hypothesize that metal oxide modifications on the Pt surface offer a way to reduce the AOR overpotential independently from the deactivation mechanism. To test this hypothesis, the catalyst surface composition will be modified using atomic layer deposition (ALD) of metal oxide clusters and characterized in detail, including fundamental electrochemical and operando microscopy and spectroscopy methods. This Marie Curie Fellowship combines my own expertise on fundamental Pt electrochemistry and the effects of metal oxide modifications with the world-leading expertise of the Interface Science Department at the Fritz-Haber Institute of the Max-Planck-Society on controlled nanoparticle synthesis and operando electrocatalyst research.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.