Elucidating the bidirectional energy cascade of geophysical turbulence in time...
Elucidating the bidirectional energy cascade of geophysical turbulence in time space and scale
Turbulent fluid motions are responsible for closing the energy budget in Earth’s atmosphere and on many astrophysical bodies, dictating their long-term evolution and climate. However, geophysical turbulence, even in the simplest c...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CGL2015-72259-EXP
REPRESENTACION DE ONDAS DE KELVIN EN MODELOS DE BALANCE
48K€
Cerrado
FLAVE
Energetics of natural turbulent flows the impact of waves a...
1M€
Cerrado
Unicorn
Developing a novel framework for understanding and scaling...
2M€
Cerrado
MixClouds
Unraveling the impact of turbulence in Mixed-phase Clouds
2M€
Cerrado
CONVECT
A new approach to modelling turbulent planetary circulations
169K€
Cerrado
EUHIT
European High performance Infrastructures in Turbulence
9M€
Cerrado
Información proyecto GeoCascade
Duración del proyecto: 28 meses
Fecha Inicio: 2023-04-19
Fecha Fin: 2025-09-17
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Turbulent fluid motions are responsible for closing the energy budget in Earth’s atmosphere and on many astrophysical bodies, dictating their long-term evolution and climate. However, geophysical turbulence, even in the simplest contexts, remains an open problem. Past work has shown that the theory for homogeneous and isotropic turbulence (HIT) breaks down in a fluid subject to rotation, stratification, or large aspect ratios. Particularly affected is the central insight from the study of HIT, stating that energy moves to smaller scales through an ‘energy cascade’. In geophysical flows, energy can flow both to larger and smaller scales through a ‘bidirectional’ cascade. The fraction of energy going to large scales depends on the value of the relevant geophysical parameter, becoming nonzero at an apparent critical point. The goal of this project is to identify the spatial and spectral signatures of the bidirectional cascade, understand their role in the cascade’s sudden onset, and develop a quantitative theory for its subsequent development. We plan to use a combination of numerical and statistical methods to explore the bidirectional cascade in space, time, and scale. This analysis will be done through two complementary perspectives, investigating turbulent structures in physical space and in spectral space. In the former, the turbulent cascade manifests itself as individual structures which break up, merge, or clump together, depending on the regime. A statistical view of these interactions will provide insight on how the nature of the flow changes. On the other hand, in spectral space, the phases of the complex velocity amplitudes are known to be responsible for the exchange of energy among different length scales. We will look into a possible partial synchronization between these phases in our simulations, and attempt to model the transition to a bidirectional cascade using tools from the rich field of synchronization in complex networks.