Elliptic Combinatorics Solving famous models from combinatorics probability an...
Elliptic Combinatorics Solving famous models from combinatorics probability and statistical mechanics via a transversal approach of special functions
I am willing to solve several well-known models from combinatorics, probability theory and statistical mechanics: the Ising model on isoradial graphs, dimer models, spanning forests, random walks in cones, occupation time problems...
I am willing to solve several well-known models from combinatorics, probability theory and statistical mechanics: the Ising model on isoradial graphs, dimer models, spanning forests, random walks in cones, occupation time problems. Although completely unrelated a priori, these models have the common feature of being presumed exactly solvable models, for which surprising and spectacular formulas should exist for quantities of interest. This is captured by the title Elliptic Combinatorics, the wording elliptic referring to the use of special functions, in a broad sense: algebraic/differentially finite (or holonomic)/diagonals/(hyper)elliptic/ hypergeometric/etc.
Besides the exciting nature of the models which we aim at solving, one main strength of our project lies in the variety of modern methods and fields that we cover: combinatorics, probability, algebra (representation theory), computer algebra, algebraic geometry, with a spectrum going from applied to pure mathematics.
We propose in addition two major applications, in finance (Markovian order books) and in population biology (evolution of multitype populations). We plan to work in close collaborations with researchers from these fields, to eventually apply our results (study of extinction probabilities for self-incompatible flower populations, for instance).ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.