Electronic Order Magnetism and Unconventional Superconductivity probed in Real...
Electronic Order Magnetism and Unconventional Superconductivity probed in Real Space
The interplay of electronic order with antiferromagnetism and superconductivity has recently emerged as a vital question for rationalizing the physics of all classes of unconventional superconductors. The electronic order is rarel...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FIS2008-00454
ESPECTROSCOPIA TUNEL LOCAL DE ALTA RESOLUCION EN EL MILIKELV...
180K€
Cerrado
PDC2021-121086-I00
MICROSCOPIAS DE BARRIDO A BAJAS TEMPERATURAS EN CAMPOS MAGNE...
104K€
Cerrado
FURORE
FUndamental studies and innovative appROaches of REsearch on...
2M€
Cerrado
MAT2015-72795-EXP
SUPERCORRIENTES POLARIZADAS EN ESPIN: EFECTO JOSEPHSON FERRO...
54K€
Cerrado
ODDSUPER
New mechanisms and materials for odd frequency superconducti...
1M€
Cerrado
PIXIE
Spin triplet proximity effect and spin injection in High Tc...
186K€
Cerrado
Información proyecto MARS
Duración del proyecto: 65 meses
Fecha Inicio: 2015-03-16
Fecha Fin: 2020-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The interplay of electronic order with antiferromagnetism and superconductivity has recently emerged as a vital question for rationalizing the physics of all classes of unconventional superconductors. The electronic order is rarely sufficiently long-range correlated to render it susceptible for diffraction techniques. Instead, a local probe is usually required to detect it experimentally. It is clear, however, that such a probe must provide sensitivity at the same time to electronic order, superconductivity, and static magnetism for clarifying the interplay between these ordering phenomena. The only experimental technique which is capable of fulfilling these requirements simultaneously is spin-polarized scanning tunneling microscopy (SP-STM). This technique utilizes spin-polarized tunneling currents in order to measure signatures of electronic order, superconducting gaps, and the magnetic structure at the atomic scale. To the best of our knowledge, SP-STM has never been applied to unconventional superconductors, despite the mandatory necessity.
Exactly this is the goal of the MARS project: We want to combine SP-STM, which we recently established in our microscopes, with our experience in scanning tunneling microscopy on unconventional superconductors. We will apply highest-resolution SP-STM systematically to prototype representatives of the most important classes of unconventional superconductors, viz. cuprate, iron-arsenide, and heavy-fermion superconductors. For this purpose, a unique milli-Kelvin scanning tunneling microscope will be built, in order to achieve unprecedented resolution in spin-polarization, energy, and real-space.