Electron dynamics to the Attosecond time scale and Angstrom length scale on low...
Electron dynamics to the Attosecond time scale and Angstrom length scale on low dimensional structures in Operation
We will develop and use imaging techniques for direct probing of electron dynamics in low dimensional structures with orders of
magnitude improvements in time and spatial resolution. We will perform our measurements not only on st...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
We will develop and use imaging techniques for direct probing of electron dynamics in low dimensional structures with orders of
magnitude improvements in time and spatial resolution. We will perform our measurements not only on static structures, but on
complex structures under operating conditions. Finally as our equipment can also probe structural properties from microns to
single atom defects we can directly correlate our observations of electron dynamics with knowledge of geometrical structure. We
hope to directly answer central questions in nanophysics on how complex geometric structure on several length-scales induces
new and surprising electron dynamics and thus properties in nanoscale objects.
The low dimensional semiconductors and metal (nano) structures studied will be chosen to have unique novel properties that will
have potential applications in IT, life-science and renewable energy.
To radically increase our diagnostics capabilities we will combine PhotoEmission Electron Microscopy and attosecond XUV/IR
laser technology to directly image surface electron dynamics with attosecond time resolution and nanometer lateral resolution.
Exploring a completely new realm in terms of timescale with nm resolution we will start with rather simple structure such as Au
nanoparticles and arrays nanoholes in ultrathin metal films, and gradually increase complexity.
As the first group in the world we have shown that atomic resolved structural and electrical measurements by Scanning Tunneling
Microscopy is possible on complex 1D semiconductors heterostructures. Importantly, our new method allows for direct studies of
nanowires in devices.
We can now measure atomic scale surface chemistry and surface electronic/geometric structure directly on operational/operating
nanoscale devices. This is important both from a technology point of view, and is an excellent playground for understanding the
fundamental interplay between electronic and structural properties.