The efficient coupling of a single electron spin to a single photon would represent a major milestone in our technological progress, and would lead to revolutionary advancements in communication and computation technologies exploi...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2020-113445GB-I00
MATERIALES PARA LA INFORMACION CUANTICA BASADOS EN EXCITONES...
99K€
Cerrado
MAT2017-83722-R
ACOPLAMIENTO CUANTICO DE LUZ Y MATERIA EN SISTEMAS DE DOS DI...
242K€
Cerrado
JCI-2011-10977
Transporte de carga y espín y fenómenos de coherencia cuánti...
96K€
Cerrado
OPTODNPCONTROL
Optically controlled carrier and Nuclear spintronics toward...
1M€
Cerrado
SOLIDSPINQOPT
Quantum Optics with Spins in Solid State The Power of Ensem...
2M€
Cerrado
PEGASOS
Photon Emitting Gated Arrays for Scalable On chip quantum Sy...
150K€
Cerrado
Información proyecto ESPCSS
Duración del proyecto: 24 meses
Fecha Inicio: 2016-03-07
Fecha Fin: 2018-03-31
Líder del proyecto
UNIVERSITY OF BRISTOL
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
183K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The efficient coupling of a single electron spin to a single photon would represent a major milestone in our technological progress, and would lead to revolutionary advancements in communication and computation technologies exploiting quantum mechanical phenomena. Recently nano-scale `domes' of semiconductor known as quantum dots have emerged as the leading platform upon which this goal can be achieved; they can host localised electrons, and around them micro `pillars' can be grown which serve to channel photon emission. The catch, however, is that these are solid-state systems, and a quantum dot inevitably interacts with a large perturbing environment. The central question motivating this research is:
How does the solid-state environment surrounding a quantum dot affect its interaction with light, and how can this environment be actively exploited to improve spin--photon coupling in these systems?
Traditional approaches used to describe quantum dot--cavity systems are based on theories originally designed to treat atom--light interactions in free-space, and therefore inadequate to treat spins in solid-state systems beyond basic phenomenological descriptions. This research will go beyond these approaches by uniting the experienced researcher's expertise in modelling the optical properties of solid-state nanostructures, with the experimental expertise of Prof John Rarity, a world-leader in few-photon physics with a long history of demonstrating novel quantum phenomena. This research will provide a much-needed theoretical toolbox to model the optical properties of spins in a host emerging solid-state systems, and will pave the way towards scalable quantum optical communication and computation technologies