Efficient Proofs and Computation A Unified Algebraic Approach
Computational complexity lies at the heart of information and computer science. Its aim is to formally understand the boundary between problems that can be solved efficiently and those that cannot. This has many applications: new...
ver más
CONJEXITY
Investigating the Conjectures of Fine-Grained Complexity
1M€
Cerrado
ExtenDD
Coming to Terms: Proof Theory Extended to Definite Descripti...
2M€
Cerrado
CoCoSym
Symmetry in Computational Complexity
1M€
Cerrado
PID2021-126605NB-I00
NUEVA METODOLOGIA HOLISTICA PARA LA CONFIGURACION, COMPARACI...
127K€
Cerrado
Últimas noticias
27-11-2024:
Videojuegos y creaci...
Se abre la línea de ayuda pública: Ayudas para la promoción del sector del videojuego, del pódcast y otras formas de creación digital
27-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 1 concesiones
Descripción del proyecto
Computational complexity lies at the heart of information and computer science. Its aim is to formally understand the boundary between problems that can be solved efficiently and those that cannot. This has many applications: new algorithms are important to make progress in domains such as machine learning and optimization, and new complexity lower bounds (namely, computational impossibility results) are essential to provably secure cryptography. Beyond practical applications, these questions reveal deep mathematical and natural phenomena. One of the prominent directions to attack the fundamental lower bound questions in complexity comes from the study of resource bounded provability, namely proof complexity. Its aim is to understand which problems possess solutions with short correctness proofs and which do not. Traditionally, proof complexity is concerned with propositional (Boolean) logic, and thus techniques from Boolean function complexity have had a huge impact on the field, driving many of its results and agendas.
In this proposal we suggest to employ recent breakthroughs in the field of proof complexity exploiting algebraic approaches to broaden in a systematic way both the scope and techniques of proof complexity, going from weak settings to the very strong ones, up to the major open problems in the field and beyond. In particular, we propose to use algebraic notions and techniques such as structural algebraic circuit complexity, rank lower bounds, noncommutative and PI algebras, among others to significantly broaden the arsenal of lower bound tools as well as develop new models and insights into proofs, computation and their inter-relations.
This project has potential for a transformative impact in theoretical computer science and beyond, with applications to unconditional computational lower bounds, which underlie secure cryptography and derandomization of probabilistic algorithms, as well as improved SAT- and constraint-solving heuristics.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.