Effect of network of different grain boundaries and triple junctions on sensitiv...
Effect of network of different grain boundaries and triple junctions on sensitivity of microstructures to hydrogen embrittlement
A network of grain boundaries (GBs) and a microstructure which is less sensitive to hydrogen embrittlement using grain boundary engineering will be assessed on multiple scales. The fabrication of bi and tri crystals with a great v...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
DECIZA
DEscribing and Characterizing grain boundaries In Zr-Nb Allo...
212K€
Cerrado
TRITIME
Isolation, observation and quantification of mechanisms resp...
2M€
Cerrado
MAT2009-14351-C02-02
ACOPLAMIENTO DINAMICA DE FRONTERAS DE GRANO - SEGREGACION DE...
50K€
Cerrado
MAT2010-14907
PRODUCCION DE VIDRIOS METALICOS MASIVOS. ESTUDIO DE LA ESTRU...
97K€
Cerrado
BES-2011-044186
ESTUDIO DE LA ESTABILIDAD MECANICA DE LA AUSTENITA RETENIDA...
43K€
Cerrado
MAT2008-06793-C02-02
CARACTERIZACION DE MATERIALES CON GRANO NANOMETRICO Y ULTRAF...
42K€
Cerrado
Información proyecto HySens
Duración del proyecto: 33 meses
Fecha Inicio: 2024-05-13
Fecha Fin: 2027-03-09
Líder del proyecto
LA ROCHELLE UNIVERSITE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
212K€
Descripción del proyecto
A network of grain boundaries (GBs) and a microstructure which is less sensitive to hydrogen embrittlement using grain boundary engineering will be assessed on multiple scales. The fabrication of bi and tri crystals with a great variability of grains misorientations according to the probability of their presence polycrystalline nickel and nickel-based superalloys will be done. The hydrogen-GBs and hydrogen- triple junctions (TJs) interactions will be examined for different configurations of nickel bi-crystal and tri-crystals systems having variety of grain boundary energy, vacancy concentration and excess volume. Finally, influence of hydrogen on GBs and TJs will be characterized by diffusivity, trapping or segregation energies and cohesive energies. The atomistic level investigation will be done to understand the fundamentals of hydrogen embrittlement of GBs and TJs having same orientation as of fabricated crystals. The bi- and tri-crystals will be modelled in Molecular Dynamics code using LAMMPS software for understanding at atomistic level. A 3D polycrystalline FEM model will be reconstructed and these simulations should provide the optimum solutions for the architecture of the GBs and TJs networks to obtain the less sensitive microstructures to hydrogen embrittlement.