Proteins are biological macromolecules that are vital to all processes of life. Understanding the functions of proteins has great scientific and commercial value: proteins are used as industrial enzymes, as pharmaceutical treatmen...
Proteins are biological macromolecules that are vital to all processes of life. Understanding the functions of proteins has great scientific and commercial value: proteins are used as industrial enzymes, as pharmaceutical treatments, and many proteins are the targets of drugs. Current knowledge of protein function is primarily based on static structures, which have provided great insights about structure-function relationships that today form the basis for protein science and protein engineering. Proteins are, however, not static molecules, but undergo spontaneous transitions between alternative structural states, some of which are rare, transient conformations that are essentially invisible to traditional methods. These dynamical properties are known to be critically important for function, but high-resolution studies of dynamics have so far been conducted merely as an add-on following structural studies. To change the situation, we aim to establish integrative biomolecular dynamics by developing methods that integrate time-resolved X-ray crystallography, nuclear magnetic resonance spectroscopy, and molecular simulations to study the motions of proteins while they carry out their function. We focus on the challenging problem of molecular recognition because it represents a poorly understood frontier in molecular science where advances are expected to have great impact. Specifically, we will address the question of how proteins bind ligands by describing with atomic resolution the entire dynamic process to reach a consistent kinetic, thermodynamic, and structural view. We are at a point where it will be possible to develop the individual techniques required for our integrative biomolecular dynamics approach. As a team we can leverage ongoing developments in hardware and methods, while ensuring the tight integration between methods that is needed to study complex dynamical systems. We thus aim to move structural biology into a new era of protein dynamics.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.