Dynamics of nano-electromechanical waveguides: A computational multi-physics fra...
Dynamics of nano-electromechanical waveguides: A computational multi-physics framework
The remarkable electrical and mechanical properties of heterogeneous nano waveguides make it a promising material for nano-electromechanical devices such as resonators constructed by nanotube and graphene. The investigation of het...
ver más
31/05/2025
UU
207K€
Presupuesto del proyecto: 207K€
Líder del proyecto
UPPSALA UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Fecha límite participación
Sin fecha límite de participación.
Financiación
concedida
El organismo HORIZON EUROPE notifico la concesión del proyecto
el día 2023-04-06
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto NANOWAVE
Duración del proyecto: 25 meses
Fecha Inicio: 2023-04-06
Fecha Fin: 2025-05-31
Líder del proyecto
UPPSALA UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
207K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The remarkable electrical and mechanical properties of heterogeneous nano waveguides make it a promising material for nano-electromechanical devices such as resonators constructed by nanotube and graphene. The investigation of heterogeneous nano waveguides can advance the development of the existing energy and wave controlling systems, thereby contributing significantly to the exertion of device performance and the reduction of energy consumption. However, the integration of nano waveguides into functional architectures requires the development of advanced manufacturing approaches, which leads to a significant increase of research costs. Here, we present a novel perspective on dynamic analysis of heterogeneous nano-electromechanical waveguides through a computational multi-physics framework, which is based on the homogenization approach equipped with second strain gradient theory. This research project will extend the homogenization techniques used in simple waveguides to the heterogeneous nano waveguides and provide a way to considerably reduce the computational effort. On the other hand, this research project will give new insights on the size-dependent characteristics and enrich the explorations of dynamic properties for nano-electromechanical waveguides.
This project will be carried out by a talented and dedicated researcher who worked during his Ph.D. thesis on wave computational simulation method of heterogeneous nano waveguides through second strain gradient theory. The researcher will collaborate with a supervisor who has a very strong background in homogenization approach and in correspondences between second strain gradient theory and programming languages. Working in Sweden, where homogenization of nano waveguides is a subject of intense research by many experts in the field, the researcher will benefit from his experiences in France and Italy, which have strong communities on second strain gradient theory and wave computational simulation method.