In general, ordered arrays of nanomagnets with strong magnetostatic interactions forms magnonic crystals where spin waves, which are the fundamental magnetic excitation in a metallic ferromagnetic material with frequencies in the...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MAT2017-87072-C4-3-P
FABRICACION Y CARACTERIZACION DE NANODISPOSITIVOS MAGNETICOS...
109K€
Cerrado
PID2020-117024GB-C41
MODELIZACION DE LA DINAMICA DE MAGNETIZACION POR ACOPLAMIENT...
97K€
Cerrado
MagIC
MagIC Magnonics Interactions and Complexity a multifunct...
756K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
In general, ordered arrays of nanomagnets with strong magnetostatic interactions forms magnonic crystals where spin waves, which are the fundamental magnetic excitation in a metallic ferromagnetic material with frequencies in the microwave regime. Similar to magnonic crystal, phononic crystals are also special periodic materials with great promise for controlling and manipulating the propagation of elastic waves. Interestingly, the elastic waves and spin waves of comparable wavelength can propagate simultaneously in magnonic structures in the same gigahertz frequency range. This opens the perspective for extending the functionalities of wave-processing nanodevices by combining the properties of spin waves and elastic waves. Recently, artificial spin ice has emerged as a new candidate for reconfigurable magnonic devices, where the specific geometries and resulting magnetic configurations give a variety of interesting magnonic properties. But the influence of magnetoelastic coupling on the spin wave dispersion of magnonic crystals and especially artificial spin ice systems is still unexplored field. In this project, we are aiming to tune the magnetic band structure for an artificial magphonic spin ice (AMPSI) system, which increases the applications of spin ices, as a reconfigurable magnonic crystals. This follows to the main objectives of this project, which is to demonstrate programmable Fan-Out magnonic device using AMPSI and to study the magnetic monopole dynamics in AMPSI.