Real-life applications of computer vision often require high-quality visual sensors. With current technology, such sensors are expensive. Empirical evidence from our ERC-funded research of biological vision suggests that eye motio...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FJC2018-035829-I
Visión por Computador y Reconocimiento de Patrones
50K€
Cerrado
TIN2009-14404-C02-01
TECNICAS DE APRENDIZAJE PARA SISTEMAS DE VISION A GRAN ESCAL...
204K€
Cerrado
DPI2015-64571-R
IDENTIFICACION AUTOMATICA DE INFORMACION RELEVANTE EN IMAGEN...
100K€
Cerrado
RYC-2008-03789
Scalable Object Recognition Systems
192K€
Cerrado
PTQ-08-01-06929
Reconocimiento y extracción de objetos y personajes a partir...
52K€
Cerrado
RSM
Rich Structured Models for Scene Recovery Understanding an...
2M€
Cerrado
Información proyecto DRVis
Duración del proyecto: 20 meses
Fecha Inicio: 2022-04-06
Fecha Fin: 2023-12-31
Descripción del proyecto
Real-life applications of computer vision often require high-quality visual sensors. With current technology, such sensors are expensive. Empirical evidence from our ERC-funded research of biological vision suggests that eye motion enhances recognition capabilities beyond what could be expected if the eye was functioning as a static camera. Motivated by these findings, here we aim to perform the major computer vision tasks required for many real-life applications, including segmentation, classification and identification, with low-resolution cameras. The idea is to use a series of low-resolution frames from a moving camera, rather than using a single high-resolution image. This novel algorithm, termed here DRVis, can be implemented in software or hardware. Unlike existing solutions that use multiple frames to reconstruct a high resolution image from low resolution ones, DRVis does not need to learn all the particularities needed for reconstruction; instead, it focuses on extracting the necessary features per the given task. The goals of the PoC project are to scale up and diversify our current software system, implement the system in hardware and demonstrate its performance in field conditions and develop the IPR strategy and explore the commercialization potential of our solution. We expect it will be applicable to a wide spectrum of image processing tasks in settings where sensor quality is low but multiple time samples are available including smart agriculture, drone navigation and visual aid devices.