Dynamic production sequencing to minimize patient delays for compounded medicati...
Dynamic production sequencing to minimize patient delays for compounded medications
When standard medications are not appropriate for a patient’s needs, e.g., due to their allergies, retail pharmacies must rely on compounding pharmacies to blend raw ingredients and produce a personalized medication to order. Give...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
LUCERO-BIO
LUCERO BIO: Smart Optofluidic Isolation of Spheroids for Ear...
1M€
Cerrado
EHR4CR
Electronic Health Record systems for Clinical Research
17M€
Cerrado
PMed
Enabling patient specific medicines using 3D printing in hos...
4M€
Cerrado
TED2021-129221B-I00
APLICACION DE LA COMPUTACION EFICIENTE DE ALTO RENDIMIENTO C...
262K€
Cerrado
PLEC2023-010243
Herramientas diagnósticas, pronósticas y terapéuticas
539K€
Cerrado
Información proyecto CompoundingPharma
Duración del proyecto: 24 meses
Fecha Inicio: 2024-03-14
Fecha Fin: 2026-03-31
Líder del proyecto
IE UNIVERSIDAD
No se ha especificado una descripción o un objeto social para esta compañía.
Sin perfil tecnológico
Presupuesto del proyecto
181K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
When standard medications are not appropriate for a patient’s needs, e.g., due to their allergies, retail pharmacies must rely on compounding pharmacies to blend raw ingredients and produce a personalized medication to order. Given the growth in demand for personalized medications and the legal mandate in some countries that compel pharmacies to provide such medications to patients, the efficient operation of compounding pharmacies is critical to timely access to medications. However, there are complex operational dynamics when sequencing production driven by differences in medications and the need to prevent cross-contamination that lead to production delays for patients. Inspired by discussions with the management team of a compounding pharmacy, this project aims to improve operational efficiency and reduce delays by developing a dynamic production control algorithm that sequences medication production. The challenge of identifying optimal policies for multi-product production systems in the presence of set-up times has lead researchers to focus on heuristics, however, existing policies do not account for the sequence-dependent set-up times or batch processing in this setting. We propose and evaluate a theory-driven heuristic based on a novel modification of an optimal control engineering technique, known as the State-Dependent Riccati Equation approach. The performance of this heuristic is to be evaluated both theoretically as well as numerically relative to alternative heuristic policies via simulation. This contributes to the operations management and management literature, through the development and analysis of an innovation in production governance, a critical component of the industrial value chain in this setting. Moreover, the proposed algorithm can be modified for use in other complex production settings where optimal policies are intractable, and decision-makers must rely on heuristics.