The aim of this proposal is to identify, at the molecular level, the minimal topological and structural motifs that govern the membrane translocation of short peptides. A covalent reversible bond strategy will be developed for the...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SAF2017-89890-R
PEPTIDOS HIBRIDOS PARA EL TRANSPORTE SELECTIVO Y ENTREGA DE...
145K€
Cerrado
CTQ2014-59646-R
NUEVOS DISEÑOS CON CONTROL TOPOLOGICO DE PEPTIDOS PENETRANTE...
80K€
Cerrado
DRESSCODE
Engineering next-generation fusion proteins to dress the cel...
1M€
Cerrado
IJC2020-043655-I
Development of novel biotherapeutics for tumor-specific deli...
98K€
Cerrado
SAF2014-60138-R
HERRAMIENTAS QUIMICAS PARA EL ESTUDIO DE SU INTERACCION CON...
Cerrado
PEPTIDE DENDRIMERS
Peptide Dendrimers A Chemical Platform for Functional Dive...
241K€
Cerrado
Información proyecto DYNAP
Duración del proyecto: 79 meses
Fecha Inicio: 2015-12-16
Fecha Fin: 2022-07-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The aim of this proposal is to identify, at the molecular level, the minimal topological and structural motifs that govern the membrane translocation of short peptides. A covalent reversible bond strategy will be developed for the synthesis of self-adaptive penetrating peptides (adaptamers) for targeted delivery.
It is known that the recently developed therapeutic technologies (i.e. gene therapy, chemotherapy, hyperthermia, etc.) cannot reach their expected potential due to limitations in the current delivery strategies, which hinder the efficient targeting of the appropriate tissues, cells and organelles. Despite the enormous therapeutic potential of short penetrating peptides, these molecules suffer from drawbacks such as toxicity, instability to protease digestion and lack of specificity.
Dynamic covalent chemistry has significant synthetic advantages. In the proposed research, peptide scaffolds with clickable reversible groups (e.g. hydrazide) will be conjugated with collections of aldehydes to afford self-adaptive biomimetic transporters, whose secondary structure and penetrating properties will be systematically characterized by biophysical, cell-biology and pattern recognition techniques.
The versatility of dynamic supramolecular peptide adaptamers with precisely positioned protein ligands will be explored for multivalent specific recognition, protein transport, cell targeting of drugs and probes and membrane epitoping.
Additionally, we propose to synthesise dynamic and environmentally sensitive fluorescent probes for biocompatible membrane labelling and uptake signalling.
The resulting discoveries of this research will allow the formulation of novel transfecting reagents for gene therapy, selective platforms for drug-delivery and the development of dynamic fluorescent membrane probes. The potential results of this proposal will shake the fields of drug-delivery and non-viral gene transfection and will resolve the limitations of the current approaches.