The key component of nanoplasmonics is metals. When metal nanoparticles are placed in close proximity, the possibility of shaping and controlling near-field and far-field optical properties expands enormously. Near-field coupling...
The key component of nanoplasmonics is metals. When metal nanoparticles are placed in close proximity, the possibility of shaping and controlling near-field and far-field optical properties expands enormously. Near-field coupling between metal nanoparticles is extremely sensitive to nanometer conformational changes. Such strong dependence on conformation provides unique opportunities in manipulating optical response on the nanoscale. Simultaneously, it also raises significant challenges in realization of dynamic plasmonic systems, which can exhibit immediate conformational changes upon a regulated physical or chemical control input.
Also importantly, plasmonic nanostructures can serve as an efficient far-field to near-field transformer, converting optical radiation into strong localized electromagnetic fields. This unprecedented ability enables probing local dynamic changes on the nanoscale that are extremely crucial in nanocatalysis and phase transitions of nanomaterials, where many unanswered questions abound.
In my proposal, I would like to develop a new generation of dynamic nanoplasmonic building blocks for biology, chemistry, and materials science. These plasmonic building blocks either can exhibit dynamic structural changes themselves or can be integrated with functional materials, where dynamic events take place. I will utilize both bottom-up and top-down nanotechniques to advance the perspective of plasmonics towards synthetic plasmonic machinery as well as on-chip dynamic plasmonic devices with both tailored optical response and active functionality. With such plasmonic building blocks, long-standing questions in protein dynamics, chiral sensing, dynamic light matter interaction, gas-phase catalysis, and phase transitions on the nanoscale will be addressed. My proposed methods will allow for unprecedented resolution on optically disseminating dynamic behavior and revolutionary multidisciplinary experiments that were not possible to perform before.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.