Dynamic Information Acquisition Experimentation and Communication
Individuals, firms, and public organizations spend significant time and reIndividuals, firms, and public organizations spend significant time and resources to acquire, collect, and process information that guides and optimizes the...
Individuals, firms, and public organizations spend significant time and reIndividuals, firms, and public organizations spend significant time and resources to acquire, collect, and process information that guides and optimizes their decision making. Information is acquired directly by own research efforts, from academic publications that selectively publish scientific research, or from self-interested third parties that control the flow of information to influence decisions, and often information can also be learned through data-collection during day-to-day business.
How much and what information should be acquired? How can third parties be incentivised to provide information? What is the role of commitment and verifiability of evidence in communication between a self-interested information provider and a user of that information? How should data collected from day-to-day business be used to optimize decisions, if these decisions also affect and feed back into future data collection? How should results of scientific research be communicated if it affects both decision by practitioners as well as the choice of future research topics?
This research programme aims to shed light on these questions. Recognizing that information acquisition takes time, and happens gradually, often in multiple stages, it develops dynamic models of information acquisition and experimentation. The programme has four parts: (1) It develops a novel framework to analyse frictions in dynamic information acquisition and transmission that arise in communication and persuasion. (2) It develops new techniques to analyse robust dynamic information choice. (3) It develops a dynamic model of incentives for information production and communication in scientific research that contributes to the debate on publication standards. (4) It develops a theoretical framework to analyse the optimal use of data in the nascent field of predictive policing and other applications of data-driven resource allocation.ver más
14-11-2024:
Cataluña reutilizaci...
Se abre la línea de ayuda pública: Subvenciones para la ejecución de proyectos de prevención, preparación para la reutilización y reciclaje de residuos industriales para el organismo:
11-11-2024:
Asturias Hiperautoma...
Se ha cerrado la línea de ayuda pública: Proyectos de I+D+i que implementen soluciones en hiperautomatización en empresas para el organismo:
11-11-2024:
Cooperación I+D+i La...
Se ha cerrado la línea de ayuda pública: Proyectos colaborativos de desarrollo experimental e innovación que resuelvan retos en La Rioja para el organismo:
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.